LOG3206 Silk Road LogisticsBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG3206 Silk Road Logistics Spring
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Course Lecturer(s): Dr. Öğr. Üyesi LEVENT AKSOY
Recommended Optional Program Components: none
Course Objectives: Silk Road is taken as the first example of globalization, and its historical and geographical importance as a logistics network are analyzed. This historical example is used to discuss the risk, challenges, and problems of a supply chain network.

Learning Outcomes

The students who have succeeded in this course;
Importance of Logistics over the commerce history; Turkey's geological importance in global commerce;

Course Content

Supply chain concepts are analyzed over the historical network of silk road. First attempt to globalization and challenges faced on the road are discussed.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Silk Road
2) Historic silkroad
3) Routes and Countries on the Silkroad
4) Importance of the route
5) Modes of transportation
6) Cultural and international variety
7) Project assignments
8) Midterm Exam
9) Mini cases
10) Mini cases
11) Project Wrap-ups
12) Presentations
13) Presentations
14) General review

Sources

Course Notes / Textbooks: Çağrı Haksöz, Sridhar Seshadri, Ananth V. Iyer , 2011. Managing Supply Chains on the Silk Road: Strategy, Performance, and Risk, CRC, ISBN 9781439867204.
References: Mini cases

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 10
Presentation 1 % 10
Project 1 % 20
Midterms 1 % 20
Final 2 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Application 14 1 14
Project 1 45 45
Midterms 1 20 20
Final 1 30 30
Total Workload 151

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.