CEN2003 Statics and Strength of MaterialsBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CEN2003 Statics and Strength of Materials Spring
Fall
3 2 4 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi MESUT NEGİN
Course Lecturer(s): Dr. Öğr. Üyesi MESUT NEGİN
Recommended Optional Program Components: Basic Statics and Strength Principles
Course Objectives: 1. Force systems acting on Structures and Appl. of Equilibrium Equations
2. To teach students how is the mechanical behaviour of materials
3. Introduce students to evaluate stresses and deformations on structures
4. Learn About Design of Structures by Stress Analysis

Learning Outcomes

The students who have succeeded in this course;
Learn the basic mechanical behaviour of structures for designing.
Understand how to calculate stress and deformation on structures with different force application
Learn necessary stress analysis for designing

Course Content

Basic principles of statics, Equilibrium equations, Shear force and bending moment diagrams, Stress and Strain, Axial force, Torsion, Bending Moment, Combined stresses, Deflerctions, Buckling

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Application of Mechanics in Engineering
2) Vectoral operations, force and moment vectors
3) Equilibrium Equations
4) Structures (Trusses, Frames etc)
5) Center of Gravity and Moments of Inertia
6) Stress and Strain
7) Mechanical Behaviour of Materials
8) Midterm I - Axial Force
9) Stress and Deformation by Axial force
10) Stress and Deformation by Torsion
11) Stress and Deformation by bending and Deflection
12) Midterm II - Transverse Shear
13) Combined Stresses
14) Buckling

Sources

Course Notes / Textbooks: Ders Notları
References: Statics and Strength of Materials - Hibbeler, 4 th Edition, Pearson

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 0
Quizzes 4 % 10
Homework Assignments 5 % 10
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 10 6 60
Homework Assignments 5 10 50
Quizzes 4 10 40
Midterms 2 40 80
Final 1 40 40
Total Workload 270

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.