POV4218 Juxtaposition-Mixed ImagesBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
POV4218 Juxtaposition-Mixed Images Spring 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery:
Course Coordinator : Dr. Öğr. Üyesi TOLGA HEPDİNÇLER
Recommended Optional Program Components: None
Course Objectives:

Learning Outcomes

The students who have succeeded in this course;

Course Content

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Orientation and Course lecture on Aims and Goals Screening: Wim Wenders “Himmel uber Berlin” and discussion
2) Deconstructing Berlin as an artistic subject matter : Historical and Social chage and its effects on artistic production
3) German Dada and Expressionism in Berlin
4) Visit to Neu Naional Galerie: Discovering German Bauhaus and contemporary art.
5) German art from WWII to the fall of wall : Subject matters, genres and artistic juxtapositions
6) New German Artistic and Visual Experience after reunification Homework: Analyze and germen artist within his/her biographical/formal and iconographıc context. Homework: Analyze a german artist within his/her biographical/formal and iconographıc context.
7) Visit to Hamburger Bahnhof Museum: Exploring the limits of contemporary art and German conceptual artists
8) Proposals for the artistic projects. Evaluation and feedbacks on the proposed projects.
9) Early German Photography and contemporary photographic experiences since 1960s.

Sources

Course Notes / Textbooks:
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Homework Assignments 1 % 30
Midterms 1 % 20
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Application 3 12 36
Presentations / Seminar 1 10 10
Homework Assignments 1 9 9
Midterms 1 10 10
Final 1 12 12
Total Workload 119

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. 3
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics. 3
6) Ability to work effectively within and multi-disciplinary teams; individual study skills. 2
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.