LOG4436 Inventory and Warehouse ManagementBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG4436 Inventory and Warehouse Management Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Recommended Optional Program Components: None
Course Objectives: Students learn to analytically solve problems and make decision considering forecasting, inventory planning and service levels, profitability, product range, supply chain dynamics, facility location, distribution, and routing.

Learning Outcomes

The students who have succeeded in this course;
The course provides an integrated methodology for strategy based inventory and product management in supply chains.

Course Content

Course introduction, Measures in logistics, ABCD analysis, Activity based costing, Du Pont -model, Turnover, Modeling in logistics, Trend adjustment: Holt’s method, Trend and seasonal variation adjustment: Winter’s model, optimizing the parameters for the above methods, Stochastic demand, Safety stocks, Single products with time-variable demand, dynamic programming, Wagner-Whitin method, Silver-Meal heuristics, Time supply, Lot- forlot, Least unit cost, Part-period balancing, Heuristics, Yield Management – stochastic demand, Bullwhip effect, Deterministic demand, Probabilistic demand, Arborescent system, Supply chain contracts, Distribution requirements planning, Multioperiod production planning, Repair crew planning.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Course introduction, Measures in logistics, ABCD analysis
2) Activity based costing
3) Du-Pont Model, Turnover, Modeling in Logistics
4) Trend adjustment: Holt’s method, Trend and seasonal variation adjustment: Winter’s model, optimizing the parameters for the above methods
5) Stochastic demand, Safety stocks, Single products with time-variable demand, dynamic programming
6) Wagner-Whitin method, Silver-Meal heuristics, Time supply, Lot- forlot, Least unit cost, Part-period balancing, Heuristics
7) Yield Management – stochastic demand
8) Midterms Week
9) Bullwhip effect, Deterministic demand, Probabilistic demand, Arborescent system, Supply chain contracts, Distribution requirements planning
10) Multioperiod production planning, Repair crew planning
11) Case Capacent - preparation
12) Case Capacent feedback session
13) Course Wrapup; Case Sport Obermeyer feedback session
14) Finals Week

Sources

Course Notes / Textbooks: Silver, Edward A. (1998) Inventory management and production planning and scheduling. ISBN 0-471-11947-4.

References: Ders Notları - Lecture material and course reading package.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 5 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 3 42
Homework Assignments 5 12 60
Midterms 1 2 2
Final 1 2 2
Total Workload 148

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.