LOG3632 Supply Chain and Global Logistics ManagementBahçeşehir UniversityDegree Programs BIOMEDICAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG3632 Supply Chain and Global Logistics Management Fall 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Course Lecturer(s): Dr. Öğr. Üyesi ÖZGÜ TURGUT
Prof. Dr. SELİM ZAİM
Recommended Optional Program Components: None
Course Objectives: The goal of supply chain management is to link the marketplace, the distribution network, the manufacturing process and the procurement activity in such a way that customers are serviced at higher levels and yet at a lower total cost. The role of logistics in using service levels to segment markets, exploring appropriate measures to assess logistics productivity and service performance. This course provides information on auditing logistic systems and describes how greater responsiveness in the supply chain can be achieved through lead time reduction.

Learning Outcomes

The students who have succeeded in this course;
I. Analyzes how logistics capabilities and supply chain excellence can help companies gain a competitive advantage. It will also look at the relationship between logistics and financial performance.
II. Explains which customer value can be created and delivered through the supply chain. The theme will be demand-driven and responsive supply chain strategies.
III. Analyzes the need to understand the 'costs-to-serve'. Issues such as customer profitability analysis and benchmarking will be discussed.
IV. Discusses the concept of the agile supply chain and the building blocks of the agile paradigm.
V. Analyzes time compression including the search for ways in which non-value adding time can be removed from the pipeline.
VI. Examines the ideas of supply chain risk and vulnerability and explores ways in which supply chain resilience can be improved.
VII. Examines the fundamental business transformations that are required to enable supply chain integration to become a reality.
VIII. Examines the characteristics of effective supply chains.

Course Content

1st Week: Logistics & Competitive Strategy
2nd Week: Logistics & Customer Value
3rd Week: Measuring Logistics Costs and Performance
4thWeek: Creating the Agile Supply Chain
5thWeek: Strategic Lead-Time Management
6thWeek: Strategic Lead-Time Management
7thWeek: Managing the Global Pipeline
8thWeek: Managing the Global Pipeline
9thWeek: Managing Networks and Relationships
10thWeek: Managing Networks and Relationships
11thWeek: Overcoming the Barriers to Supply Chain Integration
12thWeek: Overcoming the Barriers to Supply Chain Integration
13th Week: Presentation
14th Week: Presentation

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Logistics & Competitive Strategy
2) Logistics & Customer Value
3) Measuring Logistics Costs and Performance
4) Creating the Agile Supply Chain
5) Strategic Lead-Time Management
6) Strategic Lead-Time Management
7) Managing the Global Pipeline
8) Managing the Global Pipeline
9) Managing Networks and Relationships
10) Managing Networks and Relationships
11) Overcoming the Barriers to Supply Chain Integration
12) Overcoming the Barriers to Supply Chain Integration
13) Presentation
14) Presentation

Sources

Course Notes / Textbooks: Supply Chain Management: by S. Chopra and P. Meindl, 4th ed. 2010, Upper Saddle River, NJ: Prentice Hall.

Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies by Simchi Levi, Kaminsky, Simchi Levi, 3rd ed. 2008, McGraw-Hill.

Logistics and Supply Chain Management by Martin Christoper, 2004.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 15
Midterms 1 % 35
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 40
Quizzes 3 3
Midterms 8 50
Final 8 60
Total Workload 153

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.