LOG3711 Logistics Operations ManagementBahçeşehir UniversityDegree Programs BIOMEDICAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG3711 Logistics Operations Management Spring
Fall
3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Course Lecturer(s): Dr. Öğr. Üyesi LEVENT AKSOY
Recommended Optional Program Components: none
Course Objectives: Students are exposed to different processes seen in logistics operations, and their importance both at the strategic and operational levels. Differences as well as similarities among manufacturing and service operations are discussed. Basic management tools used at the operational level of logistics institutions are presented. Moreover, students are asked to prepare a team project on one of the course topics of their choice.

Learning Outcomes

The students who have succeeded in this course;
I. Be familiar with the basic Operations Management terminology, and describe the similarities and differences of goods and service operations
II. Define Mission-Strategy relationship and describe operations/production strategies.
III. Define logistics operations.
IV. Identify different location and distribution models and compare them.
V. Identify logistics and supply chain networks
VI. Define supply chain and why bullwhip effect occurs.
VII. Define capacity and aware of different capacity management models.
VIII. Be familiar of benefits and risks of inventory and inventory management techniques.
IX. Define waste and lean production.
X. Describe quality and different quality management tools.

Course Content

Description of Operations Management and Operations Strategy. Discussion of basic topics in logistics operations, such as design of supply networks, location and layout, capacity management, inventory management, lean management, and quality.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) What is operations? Importance of Operation Management.
2) Mission-Goal-Strategy. Operations strategy. Pre-reading
3) Performance of operations. Pre-reading
4) Design of services and goods. pre-reading
5) Process design. Pre-reading
6) Decision of location and layout Pre-reading
7) Supply chain management. Pre-reading
8) Capacity management. Pre-reading
9) Review
10) Inventory management. Pre-reading
11) Planning, scheduling and ERP pre-reading
12) Lean management. Pre-reading
13) Quality management. Pre-reading
14) Operations improvement and review

Sources

Course Notes / Textbooks: Russell and Taylor, Operations Management,: Creating Value along the Supply Chain, 7th Ed., Wiley, 2011. (ISBN:9780470646236)
References: Stevenson W. L., Operations Management, 9th Ed., McGraw Hill, 2007.
Heizer, J, and B. Render, Operations Management, 10h Ed., Pearson Education, 2011. (ISBN:0-13-607366-2)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Quizzes 7 % 10
Project 1 % 25
Midterms 1 % 25
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 14 64
Presentations / Seminar 4 12
Midterms 1 2
Final 1 2
Total Workload 122

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.