ESE5401 Power Systems AnalysisBahçeşehir UniversityDegree Programs ELECTRIC-ELECTRONIC ENGINEERING (ENGLISH, NONTHESIS)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ESE5401 Power Systems Analysis Fall 3 0 3 8
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi GÜRKAN SOYKAN
Course Lecturer(s): Dr. Öğr. Üyesi GÜRKAN SOYKAN
Recommended Optional Program Components: Not available.
Course Objectives: The students will understand the stability of a power system and will be able to the dynamics of a 3-phase synchronous machine during disturbances and will be compute the stability of a machine using the equal area criteria, and perform numerical integration to solve for the dynamic solution of a perturbed system in the single and multy machine system.

Learning Outcomes

The students who have succeeded in this course;
1) Learn Fundamentals of stability for the energy systems
2) Learn Mathematical models of the Synchronous Generators
3) Learn Analysis Numerical Methods for the Stability Analysis
4) Learn Graphical Methods of the Transient Stability analysis
5) Learn Mathematical models of the Multi Machine System
6) Learn Analysis of the Multi Machine System

Course Content

Definitions of stability in energy systems, simulation methods, swing equation, equal area criterion, mathematical model of synchronous machines, excitation and mechanical regulator models, multi-machine system modelling, numerical methods, and stability analysis of a single and multi-machine systems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Basic concepts
2) Power system modelling; generators, transformer, loads, Per-Unit system
3) Power system modelling; generators, transformer, loads, Per-Unit system
4) Transmission lines and modelling
5) Transmission lines and modelling
6) Bus admittance matrix
7) Bus admittance matrix
8) Power-flow solutions
9) Power-flow solutions
10) Power-flow solutions
11) Fault analysis
12) Bus impedance matrix
13) Fault analyis
14) Fault analyis


Course Notes / Textbooks: 1. Tacer M.E., "Enerji Sistemlerinde Kararlılık", İTÜ,Sayı 1407, 1990.
2. Kundor P., "Power System Stability and Control",Mc Graw Hill Inc.NewYork, Toronto, 1994

References: 1.Saadat, H.: ‘Power System Analysis’, (Second Edition, Mcgraw-Hill Book Company, 2002, Isbn 0072848693)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 10
Project 1 % 10
Midterms 1 % 30
Final 1 % 50
Total % 100
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 14 140
Project 1 20
Midterms 1 2
Final 1 2
Total Workload 206

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
Program Outcomes Level of Contribution