INE6103 Multivariate Data AnalysisBahçeşehir ÜniversitesiAkademik Programlar ENDÜSTRİ MÜHENDİSLİĞİ (İNGİLİZCE, TEZLİ)Öğrenciler için Genel BilgiDiploma EkiErasmus BeyanıUlusal Yeterlilikler
ENDÜSTRİ MÜHENDİSLİĞİ (İNGİLİZCE, TEZLİ)
Yüksek Lisans TYYÇ: 7. Düzey QF-EHEA: 2. Düzey EQF-LLL: 7. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
INE6103 Çok Değişkenli Veri Analizi Güz
Bahar
3 0 3 9
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: İngilizce
Dersin Türü: Departmental Elective
Dersin Seviyesi: LİSANSÜSTÜ
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü:
Dersi Veren(ler): Prof. Dr. SELİM ZAİM
Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Opsiyonel Program Bileşenleri: Yok
Dersin Amacı: Bu doktora dersinin amacı, öğrencilerin çok değişkenli veri analizine ilişkin değişik konuları anlama becerilerini geliştirmek, bilgilerini arttırmak ve konunun uygulamaları ile yorumlanması hakkında pratik deneyim kazanmalarını sağlamaktır. Dersin odak noktası, doğru analizin seçimi, verinin analize hazır hale getirilmesi, çıktının yorumlanması ve karmaşık bulguların sunumu gibi pratik konuları kapsamaktadır.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
1. Çok değişkenli veri analizi için gereken prosedürleri ve programları kullanabilme becerisi geliştirmek.
2. Belirli bir araştırma problemi için uygun çok değişkenli veri analizi tekniğini belirleyebilmek.

Dersin İçeriği

Bu ders kapsamında işlenecek konular: Doğrusal ve çoklu regresyon modelleri, kukla değişkenli regresyon modelleri, çoklu doğrusal bağlantı problemi ve çözüm yöntemleri, çok değişkenli veri analiz teknikleri (Yapısal eşitlik modeli, faktör analizi, kovaryans analizi, ayırma analizi).

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Giriş
2) Verinin değerlendirilmesi ve temel veri manupulasyonları
3) Çoklu regresyon analizi
4) Açıklayıcı faktör analizi
5) Covaryans temelli Yapısal eşitlik modeli
6) Doğrulayıcı Faktör analizi
7) Değerlendirme, Arasınav
8) Yol analizi: Kovaryans temelli yapısal eşitlik modelinde
9) Varyans temelli yapısal eşitlik modeli
10) Yol analizi: Varyans temelli yapısal eşitlik modeli altında
11) Sinir ağları analizi
12) Ayırma (Diskriminant) analizi
13) Kümeleme analizi
14) Problemler, gözden geçirme

Kaynaklar

Ders Notları / Kitaplar: • Multivariate Data Analysis by Joseph F. Hair, Jr,, William C. Black, Barry J. Babin, Rolph E. Anderson, 7/E, Pearson, 2010.
• Applied Multivariate Techniques by Subhash Sharma. John Wiley & Sons, Inc. 1996.
• Regression Analysis by Example by Samprit Chatterjee and Ali S. Hadi. John Wiley & Sons, Inc. 2006.
Diğer Kaynaklar: Various

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Ara Sınavlar 1 % 40
Final 1 % 60
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 40
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 60
Toplam % 100

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı Süre (Saat) İş Yükü
Ders Saati 13 3 39
Sınıf Dışı Ders Çalışması 14 6 84
Ödevler 5 5 25
Ara Sınavlar 1 15 15
Final 1 25 25
Toplam İş Yükü 188

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Süreç odaklılık ve analitik düşünce
2) yönetimsel düşünce ve teknik altyapı
3) Yöneylem araştırması metodları hakkında teorik bilgi sahibi olma.
4) Yöneylem araştırmasının uygulamaları hakkında farkındalık
5) Endüstri mühendisliği uygulamaları için gerekli modern teknik, araç ve bilişim teknolojilerini seçme ve etkin olarak kullanma becerisine sahip olabilmek
6) Mühendislik problemleri için deney tasarlama, deney yapma, veri toplama ve sonuçları analiz etme ve yorumlama becerisine sahip olabilmek
7) Türkçe ve İngilizce sözlü ve yazılı, ve görsel yöntemler kullanarak etkin iletişim kurma becerisine sahip olabilmek
8) Girişimcilik, Sürdürülebilirlilik ve Yenilikçilik hakkında farkındalık sahibi olabilmek
9) Disiplin içi veya çok disiplinli takımlarda liderlik yapmak, karmaşık durumlarda çözüm yaklaşımları geliştirmek, bireysel çalışabilmek ve sorumluluk almak
10) Mesleki ve Etik sorumluluk bilincine sahip olabilmek
11) Yaşam boyu öğrenmenin gerekliliği bilincine ulaşabilmek
12) Mühendislik çözümlerinin ekonomik ve hukuksal sonuçları konusunda farkındalık sahibi olabilmek
13) Yönetimsel problemleri çözerken ekonomik, sosyal ve çevresel faktörleri gözönüne alabilme