ENM5302 Supply Chain and Logistics ManagementBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ENM5302 Supply Chain and Logistics Management Spring
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. BARIŞ SELÇUK
Recommended Optional Program Components: N.A.
Course Objectives: This course is intended to provide students with in depth knowledge of principles and theory of supply chain management. The goal of this course is to cover not only high-level supply chain strategy and concepts, but also to give students a solid understanding of the analytical tools necessary to solve supply chain problems. This course helps students develop an understanding of the strategic role of a supply chain, the key strategic drivers of supply chain performance, analytic methodologies for supply chain analysis and their interrelationships.

Learning Outcomes

The students who have succeeded in this course;
After completing this course, students should be able to:
• Understand how good supply chain management can be a competitive advantage
• Identify the key drivers of supply chain performance
• Apply analytical methods to practical supply chain problems

Course Content

Strategic modeling of supply chains, supply chain design, tactical planning of supply chains, planning and control of supply chain operations, inventory planning, production and distribution planning in supply chains, bull-whip effect.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Supply Chain Management
2) Supply Chain Strategy, Supply Chain Drivers
3) Supply Chain Network Design – Framework
4) Supply Chain Network Design - Uncertainty
5) Demand and Supply Management - Forecasting
6) Demand and Supply Management – Aggregate Planning
7) MIDTERM
8) Demand and Supply Management – Inventory Planning
9) Demand and Supply Management – Inventory Planning
10) Transportation in a Supply Chain
11) Student Term Project Presentations
12) Student Term Project Presentations
13) Student Term Project Presentations
14) Review
15) FINAL

Sources

Course Notes / Textbooks: Chopra, S. and Meindl P., Supply Chain Management: Strategy, Planning and Operations, 3rd Edition, Pearson, 2007.
References: Sanders N.R., Supply Chain Management: A Global Perspective, 1st Edition, Wiley, 2012.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 13 3 39
Presentations / Seminar 1 20 20
Project 1 40 40
Midterms 1 41 41
Final 1 50 50
Total Workload 190

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.