ENM5242 Service Operations ManagementBahçeşehir UniversityDegree Programs EDUCATIONAL TECHNOLOGY (ENGLISH, THESIS)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
EDUCATIONAL TECHNOLOGY (ENGLISH, THESIS)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ENM5242 Service Operations Management Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. BARIŞ SELÇUK
Recommended Optional Program Components: N.A.
Course Objectives: This course is intended to provide students with in depth knowledge of principles and theory of service operations management. The broad topic of service operations management will be studied from an integrated viewpoint with a focus on customer satisfaction and service delivery. This course will provide students with the concepts and tools necessary to understand the distinctive characteristics of services and
provide solutions for important management problems. The topics that are covered in this course include understanding and describing service systems, designing services, managing
and improving service quality, and managing demand and supply in service operations.

Learning Outcomes

The students who have succeeded in this course;
I. Define the distinctive characteristics of services.
II. Describe a service by using the service package concept.
III. Describe a service’s front-stage and backstage activities and illustrate the blue-print of a service.
IV. Describe five different quality gaps of service. Identify these gaps in case studies.
V. Illustrate the process flow diagram of a service.
VI. Identify bottleneck activities, calculate rush order flow times, cycle times and throughput times of a service.
VII. Use linear programming to construct DEA models of different service units. Solve the DEA model and identify efficient and inefficient service units.
VIII. Find the optimal location of a service facility by using cross-median approach.
IX. Find the optimal location of a service facility by using euclidean approach.
X. Use Huff retail location model to calculate the market share of a service facility in a competitive environment.
XI. Describe the overbooking strategy used in airlines and hotels. Define booking limits and protection levels.
XII. Find the optimal booking limits for a reservation system by using theories of optimization and probability.
XIII. Describe a queueing system by identifying its queue configuration, queue discipline, arrival pattern, service pattern and capacity.
XIV. Describe the psychological aspects of waiting lines.
XV. Use queueing theory to calculate the average waiting time per customer, average number of customers in the queue.

Course Content

Service definition, service package, characteristics of service, service quality, managing demand and supply in service, service facility location decisions, queuing theory applications in service, data envelopment analysis, revenue management.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Understanding Services: Introduction to Service Operations Management, Characteristics and Classification of Services, Service Strategies
2) Service Design: Generic Approaches, Service Blueprinting, Service Quality
3) Service Design: Generic Approaches, Service Blueprinting, Service Quality
4) Service Design: Service Processes Improvement, Data Envelopment Analysis
5) Service Design: Data Envelopment Analysis
6) Service Design: Service Facility Location
7) MIDTERM I
8) Managing Service Operations: Managing Capacity and Demand, Yield Management
9) Managing Service Operations: Yield Management
10) Managing Service Operations: Yield Management
11) Quantitative Models for Service Management: Capacity Planning and Queuing Models, Preparation for MIDTERM II Exam
12) MIDTERM II
13) Quantitative Models for Service Management: Capacity Planning and Queuing Models
14) Review
15) Preparation for the final exam
16) FINAL

Sources

Course Notes / Textbooks: Fitzsimmons, James A. and Mona J. Fitzsimmons, Service Management: Operations, Strategy, Information Technology, 7th Edition, McGraw-Hill, Singapore, 2008.
References: Johnston, Robert and Graham Clark, Service Operations Management: Improving Service Delivery, 3rd Edition, Prentice Hall, London, 2008.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 5 % 15
Midterms 2 % 50
Final 1 % 35
Total % 100
PERCENTAGE OF SEMESTER WORK % 65
PERCENTAGE OF FINAL WORK % 35
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Homework Assignments 5 10 50
Midterms 2 32 64
Final 1 50 50
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Being able to develop and deepen their knowledge at the level of expertise in the same or a different field, based on undergraduate level qualifications.
2) To be able to comprehend the interdisciplinary interaction with which the field is related.
3) To be able to use the theoretical and applied knowledge at the level of expertise acquired in the field.
4) To be able to interpret and create new knowledge by integrating the knowledge gained in the field with the knowledge from different disciplines.
5) To be able to solve the problems encountered in the field by using research methods.
6) To be able to systematically transfer current developments in the field and their own studies to groups in and outside the field, in written, verbal and visual forms, by supporting them with quantitative and qualitative data.
7) To be able to critically examine social relations and the norms that guide these relations, to develop them and take action to change them when necessary.
8) To be able to critically evaluate the knowledge and skills acquired in the field of expertise and to direct their learning.
9) To be able to supervise and teach these values by observing social, scientific, cultural and ethical values in the stages of collecting, interpreting, applying and announcing the data related to the field.
10) To be able to develop strategy, policy and implementation plans in the fields related to the field and to evaluate the obtained results within the framework of quality processes.
11) To be able to use the knowledge, problem solving and/or application skills they have internalized in their field in interdisciplinary studies.
12) Being able to independently carry out a work that requires expertise in the field.
13) To be able to develop new strategic approaches for the solution of complex and unpredictable problems encountered in applications related to the field and to produce solutions by taking responsibility.
14) Being able to lead in environments that require the resolution of problems related to the field.