ENM5227 Risk ManagementBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ENM5227 Risk Management Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ETHEM ÇANAKOĞLU
Course Lecturer(s): Dr. Öğr. Üyesi ETHEM ÇANAKOĞLU
Recommended Optional Program Components: N.A.
Course Objectives: This course introduces students to the main strategies, methods and techniques used to manage the risks faced by the organizations during their on going business. Students will learn financial risk assessment and measurement techniques, how to organize and structure the financial risk management, how to manage the main financial risks: market, credit operational, liquidity, interest rate, foreign exchange risk, etc. Also students will learn how to measure and to manage the risks at the corporate level.

Learning Outcomes

The students who have succeeded in this course;
• analyse, model and manage financial risks faced by a variety of institutions.
• calculate different risk metrics such as value at risk.
• quantify market risk, credit risk, and operational risk.
• learn mathematics of interest rates.
• learn basics of different financial instruments used for risk management.

Course Content

Tools for Measuring Risk, Interest Rate Risk, Value at Risk, Volatility, Correlations and Copulas, VaR Methods

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Tools for Measuring Risk
3) Trading in Financial Markets
4) Financial Risk in Banks
5) Insurance
6) Case - The Credit Crisis of 2007
7) Financial Derivatives
8) How Traders Manage Their Risks
9) Midterm
10) Interest Rate Risk
11) Value at Risk
12) Volatility
13) Correlations and Copulas
14) Operational Risk
15) Final exam preparation
16) Final

Sources

Course Notes / Textbooks: John C. Hull, “Risk Management and Financial Institutions”, Wiley Finance.
References: Philippe Jorion, “Value at Risk, 3rd Ed.: The New Benchmark for Managing Financial Risk”, McGraw Hill

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 2 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 13 39
Study Hours Out of Class 14 170
Project 4 80
Midterms 1 3
Final 1 3
Total Workload 295

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. 3
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics. 3
6) Ability to work effectively within and multi-disciplinary teams; individual study skills. 2
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.