CMP5101 Veri MadenciliğiBahçeşehir ÜniversitesiAkademik Programlar ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ (İNGİLİZCE, DOKTORA)Öğrenciler için Genel BilgiDiploma EkiErasmus BeyanıUlusal YeterliliklerBologna Komisyonu
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ (İNGİLİZCE, DOKTORA)
Doktora TYYÇ: 8. Düzey QF-EHEA: 3. Düzey EQF-LLL: 8. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
CMP5101 Veri Madenciliği Güz
Bahar
3 0 3 8
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: English
Dersin Türü: Departmental Elective
Dersin Seviyesi: LİSANSÜSTÜ
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Dr. Öğr. Üyesi TEVFİK AYTEKİN
Dersi Veren(ler): Dr. Öğr. Üyesi TEVFİK AYTEKİN
Opsiyonel Program Bileşenleri: Yok
Dersin Amacı: Bu ders veri madenciliği kavramları bir giriş sağlar. Veri madenciliği temel kavramlar: sık öğe kümesi algılama, birliktelik kuralları, kümeleme ve sınıflandırma derinlemesine ele alınmıştır

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
I. CRISP-DM kullanımında yeterlilik göstererek, bir süreç olarak veri madenciliği yaklaşımı yapabilme, iş anlayışı aşaması da dahil olmak üzere çapraz-Endüstri Standardı Süreci veya veri madenciliği, veri anlayışı aşaması, keşfedici veri analizi aşamasında , modelleme aşamasında, değerlendirme aşaması ve dağıtım aşaması.
II. WEKA dahil önde gelen veri madenciliği yazılımı, yetkin olun
III. k-ortalamalar kümeleme, BIRCH kümeleme, Kohonen kümeleme, sınıflandırma ve regresyon ağaçları, C4.5 algoritması, lojistik regresyon, k-en yakın komşu dahil geniş bir kümelenme yelpazesi, tahmin, tahmin ve sınıflandırma algoritmaları uygulayabilir,
IV. Metin madenciliği, madencilik genomik veri ve diğer güncel konular gibi en güncel veri madenciliği teknikleri ve uygulamaları, geçerlidir.
V. Yukarıda belirtilen algoritmalar matematiksel istatistik temelleri anlamak
VI. Veri madenciliği güncel araştırma ve ileri konular değerlendirin.

Dersin İçeriği

1. Sık Ürün Seti Algılama
2. Birliktelik Kuralı Madenciliği
3. Kümelenme
4. Sınıflandırma

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Veri Madenciliğine Giriş Yok
2) Sıklıkla satılan ürün kümelerinin tespit edilmesi Yok
3) Çeşitli algoritmalar: Apriori, FPGrowth Yok
4) Birliktelik Kuramı Yok
5) Sınıflandırma Yok
6) Bayesçi Sınıflandırma Yok
7) Ara Sınav Genel Tekrar
8) Kural Tabanlı Sınıflandırıcı Yok
9) Öbekleme Analizi Yok
10) k-means Yok
11) k-medoids Yok
12) Hiyerarşik Öbekleme Yok
13) Öbekleme Kalitesi Yok
14) Çoklu Öbeklemelerin birleştirilmesi Yok

Kaynaklar

Ders Notları / Kitaplar: Data Mining Concepts and Techniques
Jiawei Han and Micheline Kamber
Morgan Kaufman
Diğer Kaynaklar:

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Projeler 5 % 10
Ara Sınavlar 1 % 40
Final 1 % 50
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 40
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 60
Toplam % 100

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı İş Yükü
Ders Saati 14 42
Sınıf Dışı Ders Çalışması 14 56
Proje 16 48
Ara Sınavlar 3 15
Final 7 35
Toplam İş Yükü 196

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Elektrik ve Elektronik Mühendisliği problemlerini belirlemek, ifade etmek ve çözmek için matematik, fen ve mühendislik konuları hakkında yeterli altyapıya ve bildiklerini uygulama yeteneğine sahip olmak
2) Tasarım, uygulama ve etkin iletişim için elektrik ve elektronik mühendisliği çizimleri ve teknik sembolleri kullanmaya ek olarak uygun analiz ve modelleme teknikleri şeçip uygulayarak karmaşık mühendislik problemlerini tanımlamak, ifade etmek ve çözmek.
3) Gerçekçi kısıtlar (tasarımın doğasına özgü olarak ekonomik, çevresel, sosyal, politik, sağlık ve emniyet, üretilebilirlik ve sürdürülebilirlik gibi konular olabilir) altında tanımlanmış ihtiyaçları karşılayacak bir sistem, bileşen ya da süreçin var olan tasarımını gerçekleştirmek ya da baştan tasarlamak için gerekli yetiye sahip olmak
4) Elektrik ve elektronik mühendisliği yapabilmek ve yeni uygulamalara uyum gösterebilmek için gerekli yenilikçi ve güncel teknikler, beceriler, bilgi teknolojileri ve modern mühendislik araçlarını geliştirmek, seçmek, uyarlamak ve kullanmak
5) Deney tasarlamak ve yapmanın yanı sıra gerekli veriyi toplamak, analiz etmek ve yorumlamak, ve bu bilgiyi tasarımı geliştirmek için kullanmak
6) Bireysel olduğu kadar farklı disiplinlerden oluşan takımlar içinde diğerleriyle işbirliği yaparak çalışabilmek.
7) Hem İngilizce hem de Türkçe (eğer Türk vatandaşı ise) olarak etkin bir şekilde iletişim kurabilmek
8) Yaşam boyu ögrenmenin gerekliliğini fark etmek ve öğrenmeye devam etmenin yanı sıra teknolojik çevredeki değişimlere uyum sağlayabilmek
9) Profesyonel ve etik sorumlulukların farkında olmaya ek olarak işçilerin sağlığının, çevre ve iş emniyetinin bilincinde olmak
10) Proje, risk, idare gibi iş hayatı uygulamalarının yanı sıra girişimcilik, yenilikçilik ve sürdürülebilir gelişim hakkında bilgi sahibi olmak
11) Elektrik ve Elektronik mühendisliği çözümlerinin global, ekonomik, çevresel, yasal ve toplumsal içerikteki etkilerini anlamak için gerekli bilgiye sahip olmak