BNG5030 Signals and Dynamic SystemsBahçeşehir UniversityDegree Programs LOGISTICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
LOGISTICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BNG5030 Signals and Dynamic Systems Spring
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: None
Course Objectives: To build upon the essential concepts related to signals and dynamical systems by providing the underlying mathematical theory.

Learning Outcomes

The students who have succeeded in this course;
Upon completion of the course, students will
1. have a through understanding of representation of signals in in time and frequency domains and their relations,
2. be able to obtain various mathematical models of dynamical systems from each other,
3. be able to apply mathematical tools to obtain response of dynamical systems to various inputs.

Course Content

Analysis of discrete-time and continuous-time signals through Fourier, Laplace and z-transforms. Mathematical modeling of discrete-time and continuous-time dynamical systems in time and frequency domains. Interconnections of dynamical systems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Representation of continuous-time and discrete-time signals.
2) Fourier analysis of continuous-time signals
3) Fourier analysis of discrete-time signals
4) The Laplace transform
5) The z-transform
6) Time-domain modeling of continuous-time systems by differential equations.
7) Frequency-domain modeling of continuous-time systems by Fourier and Laplace transforms.
8) Response of continuous-time systems to specific inputs.
9) Time-domain modeling of discrete-time systems by difference equations.
10) Frequency-domain modeling of discrete-time systems by Fourier and z transforms.
11) Response of discrete-time systems to specific inputs.
12) Sampled-data systems.
13) Interconnection of systems.
14) Feedback systems.
15) Review

Sources

Course Notes / Textbooks:
References: 1. M. C. K. Khoo: Physiological Control System, Wiley, 1999.
2. R.M. Rangayyan: Biomedical Signal Analysis: A Case-Study Approach, 2001.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Application 3 % 15
Homework Assignments 5 % 15
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 14 42
Study Hours Out of Class 15 7 105
Homework Assignments 5 6 30
Midterms 1 10 10
Final 1 15 15
Total Workload 202

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have knowledge about logistics operations and the basic legislation
2) To have knowledge about the politics, corporations and the developments in logistics.
3) To have knowledge about the economical life and the basic features of the enterprises that take place in logistics sector.
4) To have knowledge about the documents that are used in logistics and how to prepare them.
5) To have knowledge about the new marketing and sales techniques and the principles of opening to new markets.
6) To have knowledge and consciousness about the job security, worker health and environment protection in logistics sector.
7) To have knowledge and consciousness about the basic legal attainments, social responsibility, ethics and social security rights in logistics.
8) To be involved in communication network in logistics sector and follow the developments. 2
9) To have the ability to comment and evaluate the classical and current theories by taking into account the developments in logistics and supply chain areas.
10) To have the basic knowledge about foreign trade and customs legislation.
11) To have knowledge about relationship between foreign trade and logistics management.
12) To have basic knowledge in at least one foreign language.
13) He/she can use information and communication tecnologies that necessary for their area, follows technological change and applies new technologies to business system.