BNG5030 Signals and Dynamic SystemsBahçeşehir UniversityDegree Programs NURSING (ENGLISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
NURSING (ENGLISH)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BNG5030 Signals and Dynamic Systems Fall 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: None
Course Objectives: To build upon the essential concepts related to signals and dynamical systems by providing the underlying mathematical theory.

Learning Outcomes

The students who have succeeded in this course;
Upon completion of the course, students will
1. have a through understanding of representation of signals in in time and frequency domains and their relations,
2. be able to obtain various mathematical models of dynamical systems from each other,
3. be able to apply mathematical tools to obtain response of dynamical systems to various inputs.

Course Content

Analysis of discrete-time and continuous-time signals through Fourier, Laplace and z-transforms. Mathematical modeling of discrete-time and continuous-time dynamical systems in time and frequency domains. Interconnections of dynamical systems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Representation of continuous-time and discrete-time signals.
2) Fourier analysis of continuous-time signals
3) Fourier analysis of discrete-time signals
4) The Laplace transform
5) The z-transform
6) Time-domain modeling of continuous-time systems by differential equations.
7) Frequency-domain modeling of continuous-time systems by Fourier and Laplace transforms.
8) Response of continuous-time systems to specific inputs.
9) Time-domain modeling of discrete-time systems by difference equations.
10) Frequency-domain modeling of discrete-time systems by Fourier and z transforms.
11) Response of discrete-time systems to specific inputs.
12) Sampled-data systems.
13) Interconnection of systems.
14) Feedback systems.
15) Review

Sources

Course Notes / Textbooks:
References: 1. M. C. K. Khoo: Physiological Control System, Wiley, 1999.
2. R.M. Rangayyan: Biomedical Signal Analysis: A Case-Study Approach, 2001.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Application 3 % 15
Homework Assignments 5 % 15
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 14 42
Study Hours Out of Class 15 7 105
Homework Assignments 5 6 30
Midterms 1 10 10
Final 1 15 15
Total Workload 202

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) "To plan and assess nursing care within a holistic approach, in accordance with theoretical and evidence-based practices. "
2) To act in accordance with ethical principles and values in Nursing practices.
3) To use life-long learning, problem-solving and critical thinking skills.
4) To use Nursing models/theories in health promotion, protection and care.
5) To take part in research, projects and activities within sense of social responsibility and interdisciplinary approach.
6) "To have skills for training and consulting according to health education needs of individual, family and the community. "
7) "To be sensitive to health problems of the community and and to able to offer solutions. "
8) "To be able to use interpersonal and intercultural communication skills effectively in Nursing pratices. "
9) "To be able to use healthcare/information technologies in Nursing practice and research. "
10) To be able to search for literature in health sciences databases and information sources to access to information and use the information effectively.
11) To be able to monitor occupational information using at least one foreign language, to collaborate and communicate with colleagues at international level.
12) To take responsibility and lead in events in order to contribute to health services and Nursing profession.