BNG5030 Signals and Dynamic SystemsBahçeşehir UniversityDegree Programs PHOTOGRAPHY AND VIDEOGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
PHOTOGRAPHY AND VIDEO
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BNG5030 Signals and Dynamic Systems Spring
Fall
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: None
Course Objectives: To build upon the essential concepts related to signals and dynamical systems by providing the underlying mathematical theory.

Learning Outcomes

The students who have succeeded in this course;
Upon completion of the course, students will
1. have a through understanding of representation of signals in in time and frequency domains and their relations,
2. be able to obtain various mathematical models of dynamical systems from each other,
3. be able to apply mathematical tools to obtain response of dynamical systems to various inputs.

Course Content

Analysis of discrete-time and continuous-time signals through Fourier, Laplace and z-transforms. Mathematical modeling of discrete-time and continuous-time dynamical systems in time and frequency domains. Interconnections of dynamical systems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Representation of continuous-time and discrete-time signals.
2) Fourier analysis of continuous-time signals
3) Fourier analysis of discrete-time signals
4) The Laplace transform
5) The z-transform
6) Time-domain modeling of continuous-time systems by differential equations.
7) Frequency-domain modeling of continuous-time systems by Fourier and Laplace transforms.
8) Response of continuous-time systems to specific inputs.
9) Time-domain modeling of discrete-time systems by difference equations.
10) Frequency-domain modeling of discrete-time systems by Fourier and z transforms.
11) Response of discrete-time systems to specific inputs.
12) Sampled-data systems.
13) Interconnection of systems.
14) Feedback systems.
15) Review

Sources

Course Notes / Textbooks:
References: 1. M. C. K. Khoo: Physiological Control System, Wiley, 1999.
2. R.M. Rangayyan: Biomedical Signal Analysis: A Case-Study Approach, 2001.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Application 3 % 15
Homework Assignments 5 % 15
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 14 42
Study Hours Out of Class 15 7 105
Homework Assignments 5 6 30
Midterms 1 10 10
Final 1 15 15
Total Workload 202

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Knowledge of photographic and video media and ability to use basic, intermediate and advanced techniques of these media.
2) Ability to understand, analyze and evaluate theories, concepts and uses of photography and video.
3) Ability to employ theoretical knowledge in the areas of the use of photography and video.
4) Familiarity with and ability to review the historical literature in theoretical and practical studies in photography and video.
5) Ability in problem solving in relation to projects in photography and video.
6) Ability to generate innovative responses to particular and novel requirements in photography and video.
7) Understanding and appreciation of the roles and potentials of the image across visual culture
8) Ability to communicate distinctively by means of photographic and video images.
9) Experience of image post-production processes and ability to develop creative outcomes through this knowledge.
10) Knowledge of and ability to participate in the processes of production, distribution and use of photography and video in the media.
11) Ability to understand, analyze and evaluate global, regional and local problematics in visual culture.
12) Knowledge of and ability to make a significant contribution to the goals of public communication.
13) Enhancing creativity via interdisciplinary methods to develop skills for realizing projects.
14) Gaining general knowledge about the points of intersection of communication, art and technology.