MKN2003 MicrocontrollersBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MKN2003 Microcontrollers Spring 1 2 2 3
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Instructor ŞAFAK BÜLBÜL
Recommended Optional Program Components: None
Course Objectives: The main purpose of this course is to introduce architecture of microcontrollers, the Assembly-level programming of microcontrollers and using in industrial applications.

Learning Outcomes

The students who have succeeded in this course;
1. Describes the architecture of microcontrollers.
2. Explains stages of microcontroller programming .
3. Be able to develop microcontroller program in assembly language.
4. Be able to develop microcontroller program in C language.
5. Designs microcontroller systems.

Course Content

In this course, the following subjects will be taught: Basics of microcontrollers, programming a microcontroller, microcontroller applications.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Microcontroller Architecture And Hardware
2) Microcontroller Architecture And Hardware
3) Microcontroller program installation
4) Algorithm Design
5) Flow diagrams
6) Microcontroller memory and registers
7) Microcontroller memory and registers
8) Microcontroller program commands
9) Microcontroller program commands
10) Microcontroller program commands
11) Basic input output programs
12) Program compilation and error checking
13) Microcontroller with 7-segment display applications
14) Microcontroller with 7-segment display applications

Sources

Course Notes / Textbooks: 1. ALTINBAŞAK, O. ,(2004), Mikrodenetleyiciler ve PIC Programlama (16F84A), Altaş Yayıncılık, İstanbul.
References: 1. Embedded Microcontrollers & Processor Design, Charles Greg Osborn.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Project 2 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Study Hours Out of Class 14 1 14
Project 2 6 12
Midterms 1 1 1
Final 1 2 2
Total Workload 85

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. 3
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics. 3
6) Ability to work effectively within and multi-disciplinary teams; individual study skills. 2
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.