BME2054 BiomechanicsBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME2054 Biomechanics Spring 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The aim of this course is;
Introduction to the application of mechanical engineering principles to biological materials and systems such as ligaments, tendons, bones, muscles and joints, to demonstrate quantitative and qualitative definitions of the effect of skeletal muscles in relation to human movement, Introduction to engineering analysis of solid bodies, hard and soft tissues, beams, bones in equilibrium

Learning Outcomes

The students who have succeeded in this course;
1. Knows the basic laws of mechanics
2. Learns the concepts of stress and strain in the context of biological tissues.
3. Knows the static and dynamic fundamentals of biomechanics
4. Understands the mechanical properties of bone and muscle tissues.
5. Apply engineering approaches and mechanical principles to solve real problems of the human body.
6. Understands the application of fluid dynamics principles to the blood circulation.

Course Content

Introduction to biomechanics, static, kinematics, kinetics, impulse and momentum, linear and angular motion, body mechanics, stress and strain, soft tissue and mechanical properties of bone.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomechanics and History of Biomechanics None
2) Linear and Angular Kinematics None
3) Linear Motions, Work, Energy and Power None
4) Fundamentals of Mechanics and Qualitative Analysis None
5) Anatomical Definitions and Muscle Structures None
6) Muscle Movements and Skeletal-Muscular System None
7) Bone Physiology and Bone Fractures None
8) Midterm 1 None
9) Structure and Mechanical Properties of Joints None
10) Mechanics of the Cardiovascular System None
11) Fluid Mechanics None
12) Midterm 2 None
13) Human Motion Analysis None
14) Human Motion Analysis None

Sources

Course Notes / Textbooks: Lecture Notes and Assignments
References: Duane Knudson, "Fundamentals of Biomechanics", 2nd Edition

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 20
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Application 14 2 28
Presentations / Seminar 1 4 4
Project 1 4 4
Homework Assignments 1 4 4
Midterms 1 2 2
Final 1 2 2
Total Workload 72

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.