BME2001 Human PhysiologyBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME2001 Human Physiology Spring
Fall
3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Hybrid
Course Coordinator : Dr. Öğr. Üyesi CANAN BAĞCI
Course Lecturer(s): Dr. Öğr. Üyesi HANİFE YASEMİN KESKİN ERGEN
Recommended Optional Program Components: None
Course Objectives: It aims to gain basic information about the structure and functions of the human body from the cellular level to the level of systems. After a short introduction, the topics of muscles, nervous system, cardiovascular system, respiratory system, excretory system, digestive system, endocrine system and reproductive system will be discussed.

Learning Outcomes

The students who have succeeded in this course;
At the end of this course students will be able to;
explain the processes of formation and maintenance of homeostasis in the body from the level of cell to the level of organ systems
explain the structure and function of the each organ system in human body
describe the regulatory mechanisms of the organ systems and the relationship between different organ systems
describe how we able to collect data about the health status of the subjects and about several physiological processes that take place in human body
describe the information that can be obtained about body via different measurement techniques (e.g. blood sample, electrophysiological data like ECG and EMG, pulmonary function tests)

Course Content

Physiology is the science of understanding how complex living organisms function from cellular level to organ systems level. This introductory course will focus on the fundamental concepts of human physiology. After discussing cell physiology, organization of human body and control systems, individual organ systems will be covered. Measurement techniques and the information that we can obtain from the collected physiological signals will also be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to human physiology, brief information about medical terminology, general organization of body, homeostasis and control systems of the body
2) Cell membrane, substance transport across the cell membrane, membrane resting potential, action potential
3) Excitable tissues, structure of muscles (skeletal muscle, smooth muscle and cardiac muscle), muscle contraction
4) Cardiac cycle, heart sounds, electrocardiography, cardiac output
5) Regulation of the cardiac functions, paths of circulation, blood vessels, blood pressure
6) Blood physiology; Skeletal system
7) Respiratory system, gas transport, regulation of respiration
8) Midterm
9) Nervous system, nerve types, action potential, synaptic transmission, peripheral & autonomic nervous system
10) Sensory physiology, regulation of body movements, states of brain activity,
11) Digestive system, gastrointestinal organs, secretions, digestion and absorption
12) Structure of the kidneys and urinary system, urine formation and elimination, fluid and electrolyte balance
13) General characteristics of the endocrine system, Endocrine glands
14) Male and female reproductive system physiology

Sources

Course Notes / Textbooks:
References: • Ganong's Review of Medical Physiology. Barrett KE, Barman SM, Boitano S, Brooks H. McGraw-Hill, 2010
free online access to the latest edition of this book: https://accessmedicine.mhmedical.com/Book.aspx?bookid=2525
• Vander's Human Physiology: The Mechanisms of Body Function. Widmaier E, Raff H, Strang K. McGraw-Hill, 2013.


Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 5 70
Quizzes 5 1 5
Midterms 1 3 3
Final 1 3 3
Total Workload 123

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.