BME1071 Introduction to Biomedical EngineeringBahçeşehir UniversityDegree Programs MECHATRONICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MECHATRONICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME1071 Introduction to Biomedical Engineering Spring
Fall
2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The objectives of this course are;
- To introduce students to the field of Biomedical Engineering (BME) with the excitement of this rapidly growing field
- To communicate students to the academic preparation needed for successful study and professional careers in the different sub-disciplines of BME
- To guide and advise students for their future plans and studies
- Providing students with information and support for other engineering or life sciences programs or different sub-disciplines of BME

Learning Outcomes

The students who have succeeded in this course;
Students who succeeded this course will;

- Have basic knowledge about the applications of engineering principles in biomedical engineering
- Know the definition of biomedical engineering and learn the areas of interest of biomedical engineers
- Know the applications of basic sciences in physics, chemistry, biology and mathematics in the field of biomedical engineering
- Know the definition and working fields of the clinical engineer
- Know to make research for providing solutions and methods to solve basic problems and interpret the results.

Course Content

- Fundamentals of biomedical engineering,
- To understand the relationship between biomedical engineering and clinical engineering,
- Fundamentals of physics, biology, physiology, mechanics and electricity and electronics,
- Fundamentals of biomedical instrumentation,
- Biosensors and their working principles,
- Optics and Photonics in medical applications,
- Medical imaging modalities.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomedical Engineering
2) Biomedical Equipment Technology
3) Fundamentals of Physics in Biomedical Engineering
4) Fundamentals of Mechanics in Biomedical Engineering
5) Fundamentals of Biology in Biomedical Engineering
6) Fundamentals of Human Physiology
7) Electrical Fundamentals of Biomedical Engineering
8) Midterm Exam
9) Biological Signals
10) Bioinstrumentation
11) Biosensors
12) Biomedical Optics
13) Principles of Medical Imaging
14) Clinical Engineering

Sources

Course Notes / Textbooks: Power Point slides will be available for student review.
References: 1. G.S. Sawhney, “Fundamentals Of Biomedical Engineering” ISBN (13) : 978-81-224-2549-9, (2007).
2. Joseph D. Bronzino, “The Biomedical Engineering Handbook Third Edition Medical Devices and Systems” (2006).
3. John G. Webster, "Medical Instrumentation, Application and Design" Fourth Edition, (2009)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Midterms 1 % 30
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Midterms 1 2 2
Final 1 2 2
Total Workload 144

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To improve fundamental computer knowledge, to encourage students using office and package programs.
2) Ability to have and use of fundamental mathematics knowledge and skills the usage of relevant materials.
3) Ability to recognize general structures of machine equipments and the features of shaping
4) Ability to grasp manufacturing processes and cutting tool materials, materials, statics, mechanics and fluid science fundemantal knowledge.
5) Ability to draw assembly and auxilary devices as well as to draw whole or details of a system.
6) Ability to have a knowledge of fundemantal manufacturing process such as turning, milling, punching,grinding and welding techniques and to have a self esteem in order to work behind the bench.
7) Ability to do computer aided design and write program on digital benches.
8) Ability to prepare project report, follow up project process and implement projects.
9) ability to learn the areas of usage of electronic circuit components. Ability to grasp and write programs for micro controllers and for their components. Ability to design relevant circuits.
10) Ability to understand the electric motors principles and AC-DC analysis
11) Ability to gain a dominaion on visual programming
12) Having the ability to communicate efficiently in verbal and written Turkish, to know at least one foreign language in order to communicate with the colleagues and customers.