BME1071 Introduction to Biomedical EngineeringBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME1071 Introduction to Biomedical Engineering Spring 2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The objectives of this course are;
- To introduce students to the field of Biomedical Engineering (BME) with the excitement of this rapidly growing field
- To communicate students to the academic preparation needed for successful study and professional careers in the different sub-disciplines of BME
- To guide and advise students for their future plans and studies
- Providing students with information and support for other engineering or life sciences programs or different sub-disciplines of BME

Learning Outcomes

The students who have succeeded in this course;
Students who succeeded this course will;

- Have basic knowledge about the applications of engineering principles in biomedical engineering
- Know the definition of biomedical engineering and learn the areas of interest of biomedical engineers
- Know the applications of basic sciences in physics, chemistry, biology and mathematics in the field of biomedical engineering
- Know the definition and working fields of the clinical engineer
- Know to make research for providing solutions and methods to solve basic problems and interpret the results.

Course Content

- Fundamentals of biomedical engineering,
- To understand the relationship between biomedical engineering and clinical engineering,
- Fundamentals of physics, biology, physiology, mechanics and electricity and electronics,
- Fundamentals of biomedical instrumentation,
- Biosensors and their working principles,
- Optics and Photonics in medical applications,
- Medical imaging modalities.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomedical Engineering
2) Biomedical Equipment Technology
3) Fundamentals of Physics in Biomedical Engineering
4) Fundamentals of Mechanics in Biomedical Engineering
5) Fundamentals of Biology in Biomedical Engineering
6) Fundamentals of Human Physiology
7) Electrical Fundamentals of Biomedical Engineering
8) Midterm Exam
9) Biological Signals
10) Bioinstrumentation
11) Biosensors
12) Biomedical Optics
13) Principles of Medical Imaging
14) Clinical Engineering

Sources

Course Notes / Textbooks: Power Point slides will be available for student review.
References: 1. G.S. Sawhney, “Fundamentals Of Biomedical Engineering” ISBN (13) : 978-81-224-2549-9, (2007).
2. Joseph D. Bronzino, “The Biomedical Engineering Handbook Third Edition Medical Devices and Systems” (2006).
3. John G. Webster, "Medical Instrumentation, Application and Design" Fourth Edition, (2009)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Midterms 1 % 30
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Midterms 1 2 2
Final 1 2 2
Total Workload 144

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.