In today's interconnected world, data is being generated at an unprecedented scale, from social media activity and e-commerce transactions to sensor data from smart devices and real-time streaming data. This constant flow of information presents both a challenge and an opportunity. The ability to make sense of this vast array of data is crucial not only for business intelligence but also for societal advancement. The program emphasizes the need for a multidisciplinary approach, preparing graduates to apply their expertise across a wide range of fields—from healthcare and finance to environmental science, entertainment, and public policy. The Big Data Analytics and Management graduate program is designed to equip students with the knowledge and skills required to harness the power of big data in an increasingly data-driven world. As organizations across industries face an overwhelming amount of data, the ability to collect, manage, and analyze this information has become a critical factor for success. The program focuses on the essential pillars of big data: data collection, data analytics, and data management, with an emphasis on transforming raw data into meaningful insights that drive decision-making. Big data is not limited to a single industry or domain. It spans virtually every sector, and the program is designed to reflect this diversity. Whether it's predicting disease outbreaks, optimizing supply chains, enhancing customer experiences, or driving innovation in smart cities, big data plays a central role. As industries recognize the potential of big data to unlock new opportunities, the demand for skilled professionals who can understand and manipulate complex datasets continues to rise. Our program focuses on developing not just technical proficiency but also a strategic understanding of how data can be used to solve real-world problems. Graduates will leave equipped with the tools necessary to manage large datasets, apply advanced analytical techniques, and communicate insights to stakeholders across diverse organizational settings. The ever-evolving nature of big data means that our curriculum emphasizes adaptability and continuous learning, preparing students to thrive in an industry defined by rapid change and innovation. |
The students who successfully complete the program are awarded the degree of Bachelor of The Big Data Analytics and Management |
This is a program. |
In accepting students to non-thesis master's programs, a bachelor's degree or equivalent graduation certificate/diploma, a foreign language proficiency certificate for programs conducted in English or another foreign language, and other criteria recommended by the Institute's Board of Directors and determined by the Senate are required. |
The students studying in this graduate program are required to have a Cumulative Grade Points Average (Cum.GPA) of not less than 3.00/4.00 and have completed all the courses with at least a letter grade of C/S in the program in order to graduate. The minimum number of ECTS credits required for graduation is 90. It is also mandatory for the students to complete their compulsory project work in a specified duration and quality. |
Students who will continue their education at Bahçeşehir University may be exempted from the courses they took at their previous educational institution within the framework of certain regulations. If the content of the course taken is compatible with the content of the course given at BAU and is approved by the institute directorate, the student may be exempted from this course. |
The program emphasizes the need for a multidisciplinary approach, preparing graduates to apply their expertise in a wide range of fields, from health and finance to environmental science, entertainment and public policy. |
Those who registered for the Non-Thesis Master's program before 06/02/2013 or those who have already graduated can apply to doctoral programs. Those who registered for the Non-Thesis Master's program after 06/02/2013 cannot apply to doctoral programs. |
1 | To be able to follow and critically analyze scientific literature and use it effectively in solving engineering problems. |
2 | To be able to design, plan, implement and manage original projects related to Big Data Analytics and Management. |
3 | To be able to carry out studies on Big Data Analytics and Management independently, take scientific responsibility and critically evaluate the results obtained. |
4 | Effectively present the results of his/her research and projects in written, oral and visual form in accordance with academic standards. |
5 | To be able to conduct independent research in the field of Big Data Analytics and Management, develop original ideas and transfer this knowledge to practice. |
6 | Uses advanced theoretical and practical knowledge specific to the field of Big Data Analytics and Management effectively. |
7 | Acts in accordance with professional, scientific and ethical values; takes responsibility by considering the social, environmental and ethical impacts of engineering applications. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BDA5001 Introduction to Big Data | 3 | 3 | 3 | 2 | 4 | 1 | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BDA5002 Marketing Analytics | 3 | 2 | 4 | 3 | 3 | 2 | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BUS5301 Research Methods and Ethics | 5 | 3 | 2 | 2 | 2 | 2 | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SEN5999 Project | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Departmental Elective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GE-Elective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
1. Semester | |||||||
Course Code | Course Name | Prerequisites | Theoretical | Practical | Credit | ECTS | |
BDA5001 | Introduction to Big Data | 3 | 0 | 3 | 8 | ||
BUS5301 | Research Methods and Ethics | 3 | 0 | 3 | 9 | ||
Departmental Elective | 3 | 6 | |||||
Departmental Elective | 3 | 7 | |||||
Total | 30 |
2. Semester | |||||||
Course Code | Course Name | Prerequisites | Theoretical | Practical | Credit | ECTS | |
BDA5002 | Marketing Analytics | 3 | 0 | 3 | 8 | ||
Departmental Elective | 3 | 8 | |||||
Departmental Elective | 3 | 7 | |||||
Departmental Elective | 3 | 7 | |||||
Total | 30 |
3. Semester | |||||||
Course Code | Course Name | Prerequisites | Theoretical | Practical | Credit | ECTS | |
SEN5999 | Project | 0 | 0 | 0 | 16 | ||
Departmental Elective | 3 | 7 | |||||
Departmental Elective | 3 | 7 | |||||
Total | 30 |