MATHEMATICS (TURKISH, PHD)
PhD TR-NQF-HE: Level 8 QF-EHEA: Third Cycle EQF-LLL: Level 8

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
INT3904 Sustainable Design Fall 2 0 2 4
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level:
Mode of Delivery:
Course Coordinator : Assoc. Prof. MEHMET BENGÜ ULUENGİN
Course Lecturer(s): Assoc. Prof. MEHMET BENGÜ ULUENGİN
Course Objectives: This course centers on issues surrounding the integration of sustainable and passive design principles into conceptual and practical architectural design.

Learning Outputs

The students who have succeeded in this course;
1. Demonstrates ability to analyze information gathered from the framework of actual physical, and environmental constraints, and synthesizes these with diverse knowledge and considerations in order to create innovative spatial solutions,

2. Identifies pertinent green technologies and grasps the ways in which these are integrated into architectural design.

Course Content

The course will focus on passive solar design, daylighting,PV, wind, double skin technologies, Cradle 2 Cradle, Design for Disassembly, Zero Carbon/Carbon Neutral strategies and other sustainability initiatives. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Sustainable Design: A discussion of ecological design principles and broad scale urban approaches to sustainable developments. A selection of case studies will be used to discuss various approaches to incorporating sustainable design objectives into architectural design. Discussion will include material selection, embodied energy, recycling initiatives, quality and durability as attitudes, implications of life cycle costing. None
2) Verifying and Marketing Green Buildings: Selling environmental design requires quantification and data. We will look at some of the Green Building tools and evaluation methods; including Green Building Advisor software, Athena Environmental Impact Estimator, ENVest, LEED, and Green Globe Standards. Peruse the website of the U.S. Green Building Council (authors of LEED): http://www.usgbc.org/ Peruse the website of the British Research Establishment Environmental Assessment Method (authors of BREEAM): http://www.breeam.org/
3) Lighting in Buildings: Detailed look at the use of light in buildings from the point of view of issues of source, quantity, quality, human response, glare, room use, control, strategies, applications. The importance of natural lighting, both from an energy conservation point of view, as well as the aesthetic impact of natural light on interior architecture and the function of space. Read Sinopoli: pp. 47-56
4) Passive solar design None
5) At the heart of it all: Energy from the sun Readings: Droege pp. 307-312 (100% Renewable: One Man’s Journey for a Solar World); Simon pp. 87-102 (Solar Energy)
6) Wind energy Reading: Simon pp. 103-122 (Wind Energy)
7) Midterm exam
8) Conserving water, gray water recycling, rainwater harvesting Read: Moxon: Chapter 3 (pp. 78-83)
9) Sustainable materials, embodied energy Read: Moxon: Chapter 3 (pp. 84-106)
10) Cradle 2 cradle design and sustainable material certification schemes Read: McDonough and Braungart: Introduction (pp. 3-16)
11) Social sustainability Read: Simon Guy, & Steven A. Moore, pp. 47-58
12) The future of sustainable design None
13) Student presentations Presentations related to the final assignment
14) Student presentations Presentations related to the final assignment

Sources

Course Notes: Mary Guzowski, Towards Zero-Energy Architecture: New Solar Design, Laurence King Publishers, 2010 Michael Braungart, Cradle to Cradle: Remaking the Way We Make Things, North Point Press, 2002 James M. Sinopoli, Smart Buildings Systems for Architects, Owners and Builders, Butterworth-Heinemann, 2009
References: Yok/None

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 13 % 10
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes 5 % 5
Homework Assignments 5 % 5
Presentation % 0
Project 2 % 20
Seminar % 0
Midterms 1 % 20
Preliminary Jury % 0
Final 1 % 40
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Laboratory 0 0 0
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 14 1 14
Presentations / Seminar 0 0 0
Project 2 18 36
Homework Assignments 0 0 0
Quizzes 0 0 0
Preliminary Jury 0
Midterms 1 2 2
Paper Submission 0
Jury 0
Final 1 2 2
Total Workload 96

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution