ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEP0821 Classical Logic Fall
Spring
3 0 3 5
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: GE-Elective
Course Level: Bachelor
Mode of Delivery: Face to face
Course Coordinator : Dr. BURCU ALARSLAN ULUDAŞ
Course Objectives: To make students to be acquainted with subject-matters and concepts of logic and to learn the way of thinking on those subject-matters and concepts.

Learning Outputs

The students who have succeeded in this course;
After successfully completing this course the student will be able
•Recognises main problems of logic.
•Explains the relation between classic logic and other disciplines
•Identify main concepts of philosophy and relation between them.
•Thinks correct and consistently.
•Describes the concept fully.
•Improves mental execution.

Course Content

Concept, definition, predicables, proposition, reasoning, fallacies

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Definition of logic, principles of reason and the essence of logic Course notes
3) Subject-matter, aim, importance and uses of logic Course notes
4) Short history of logic Course notes
5) Concept, its kinds and denotations, inter-conceptual relations Course notes
6) Predicables and categories Course notes
7) Definition, its kinds and conditions Course notes
8) Errors in definition, indefinables, division and classification Course notes
9) Proposition and its kinds Course notes
10) Modal propositions, distributivity in propositions and inter-propositional relations Course notes
11) Reasoning, syllogism, the structure and the elements of syllogism, categorical syllogisms Course notes
12) Reasoning, syllogism, the structure and the elements of syllogism, categorical syllogisms Course notes
13) Hypothetical and disjunctive syllogisms, compound syllogisms, irregular syllogisms Course notes
14) Induction, analogy, the five arts Course notes

Sources

Course Notes: Emiroğlu, İbrahim, Klasik Mantığa Giriş, Ankara 2004,
References: Öner, Necati, Klasik Mantık, Ankara 1991 Çapak, İbrahim, Gazali’nin Mantık Anlayışı, Ankara 2005

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes % 0
Homework Assignments 2 % 20
Presentation % 0
Project % 0
Seminar % 0
Midterms 1 % 20
Preliminary Jury % 0
Final 1 % 50
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Laboratory 0 0 0
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 0 0 0
Presentations / Seminar 0 0 0
Project 0 0 0
Homework Assignments 2 10 20
Quizzes 0 0 0
Preliminary Jury 0
Midterms 1 15 15
Paper Submission 0
Jury 0
Final 1 20 20
Total Workload 97

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.