BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN3304 Human Computer Interaction Fall
Spring
3 0 3 6
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level: Bachelor
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Course Lecturer(s): Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Prof. Dr. ADEM KARAHOCA
RA MERVE ARITÜRK
RA SEVGİ CANPOLAT
Course Objectives: Main objective is to understand the user centered design in software engineering. Human Computer Interaction is an important interdisciplinary studying area, both scholars and professionals. It covers computer science, anthropology and educational psychology, etc. User interface design issues are critical for encountering, end users’ needs in software development process and these topics will be given.

Learning Outputs

The students who have succeeded in this course;
1. Define the basic terms and concepts related to human-computer interaction
2. Define the limits and human capabilities
3. Construct user and task analysis
4. Designe user interface and develop prototype
5. Identify the usability testing steps
6. Analyse the human perspective
7. Describe the importance of color and typography for user interfaces
8. Review the new user interface design techniques such as accessibility, globalization, and personalization.
9. Identify the hierarchical models represent a user’s task and goal structure
10. Identify new research areas of HCI.

Course Content

The course content is composed of hci fundamentals, making interactive systems natural, user modeling in user-centred system design, the user-centred system design process, task analysis, requirements gathering, storyboarding and prototyping, cognitive physiology, the model human processor, advancing simplistic theories, theories of human perception, observational evaluation and protocol analysis, experiments.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) What is interaction design?
2) Understanding and Conceptualizing interaction
3) Cognitive Aspects
4) Social Interaction and Design
5) Emotional Interaction and design
6) Interfaces and Design
7) Interfaces and Design principles
8) Data Gathering Techniques
9) Data analysis, interpretation and presentation
10) The process of interaction design
11) User Centered Interface Evaluation Techniques
12) Project Presentations
12) Project Presentations
14) Project Presentations

Sources

Course Notes: Preece, Rogers, Sharp, Interaction Design Beyond Human-Computer Interaction, 2015, 4th edition, Wiley, Serengül Smith Atakan, Human Computer Interaction, Thomson, 2006, ISBN: 1-84480-454-2 Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale, Human – Computer Interaction, Third Edition, Pearson Prentice Hall.
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 0 % 0
Laboratory 0 % 0
Application 0 % 0
Field Work 0 % 0
Special Course Internship (Work Placement) 0 % 0
Quizzes 9 % 10
Homework Assignments 0 % 0
Presentation 0 % 0
Project 1 % 20
Seminar 0 % 0
Midterms 1 % 30
Preliminary Jury 0 % 0
Final 1 % 40
Paper Submission 0 % 0
Jury 0 % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 0 0 0
Presentations / Seminar 0 0 0
Project 1 8 8
Homework Assignments 0 0 0
Quizzes 9 5 45
Preliminary Jury 0 0 0
Midterms 1 10 10
Paper Submission 0 0 0
Jury 0 0 0
Final 1 20 20
Total Workload 139

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.