MATHEMATICS (TURKISH, PHD)
PhD TR-NQF-HE: Level 8 QF-EHEA: Third Cycle EQF-LLL: Level 8

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN3301 Computer Graphics and Animation Fall 2 2 3 6
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Instructor DUYGU ÇAKIR YENİDOĞAN
Course Lecturer(s): Instructor DUYGU ÇAKIR YENİDOĞAN
RA SEVGİ CANPOLAT
Dr. Öğr. Üyesi ÖVGÜ ÖZTÜRK ERGÜN
Course Objectives: This course provides an introduction to an introduction to computer graphics and mathematical aspects. Students will identify fundamentals graphics and animation algorithms, be able to develop substantial graphics/animation applications.

Learning Outputs

The students who have succeeded in this course;
1. Identify the mathematical basics of 2D/3D computer graphics.
2. Describe the differences between graphics algorithms and visual programming codes.
3. Analyse the computer graphics algorithms.
4. Assess the main geometric transformation concepts such as translation, rotation, and scaling.
5. Develop substantial graphic and animation application with Java technologies.
6. Construct graphical programs using associated libraries.

Course Content

The course content is composed of computer graphics basics, graphics programming concepts, graphics output primitives, basics of computer graphics mathematics, geometric transformation and 2d viewing,3d transformation and 3d projections, lighting and shading, 3d modeling and visibility, texture mapping and an introduction to animations and animation.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Computer Graphics
2) Graphics Programming Concepts
3) Graphics Output Primitives
4) Basics of Computer Graphics Mathematics
5) Geometric Transformation
6) Geometric Transformation and 2D Viewing
7) 2D Viewing / Midterm I
8) 3D Transformation and 3D Projections.
9) Lighting and Shading
10) 3D Modeling and Visibility
11) Visibility / Midterm II
12) Texture Mapping and An Introduction to Animations
13) Animation
14) Case Studies

Sources

Course Notes: Casey Reas, Ben Fry, Processing: A Programming Handbook for Visual Designers and Artists, MIT Express, ISBN: 978 – 0321321374. Daniel Shiffman, Learning Processing – A Beginners Guide to Programming Images, Animation, and Interaction, Morgan Kaufman, ISBN: 978 – 012373602 – 4.
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance % 0
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes % 0
Homework Assignments 2 % 20
Presentation % 0
Project % 0
Seminar % 0
Midterms 2 % 40
Preliminary Jury % 0
Final 1 % 40
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 7 2 14
Presentations / Seminar 0 0 0
Project 0 0 0
Homework Assignments 2 5 10
Quizzes 0 0 0
Preliminary Jury 0 0 0
Midterms 2 12 24
Paper Submission 0 0 0
Jury 0 0 0
Final 1 14 14
Total Workload 118

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution