ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN2201 Computing Systems Spring 3 0 3 6
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Must Course
Course Level: Bachelor
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi PINAR BÖLÜK
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
Dr. Öğr. Üyesi PINAR BÖLÜK
Course Objectives: Course objective is defining bits, data types, and operations, digital logic structures, the Von Neumann model, programming, assembly language, I/O, trap routines and subroutines, the stack, introduction to programming in C, variables and operators, control structures, functions, testing and debugging, pointers and arrays, recursion, I/O in C, data structures.

Learning Outputs

The students who have succeeded in this course;
1. Define basics of computational devices
2. Define bits, data types and operations
3. Define logic gates, combinational logic circuits, concept of memory, sequential logic circuits.
4. Define memory organization, registers, instruction set, data types, addressing modes.
5. Use variables, operators, control structures, iteration structures, pointers and array and functions in C programming language

Course Content

The course content is composed of the basics of computer systems, bits, data types and operations, digital logic structures (logic gates, combinational logic circuits, concept of memory, sequential logic circuits), the von Neumann model,
memory organization and registers, instruction sets, addressing models, Assembly language, Programming in C.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to a Computer System
2) Bits, Data Types, and Operations
3) Digital Logic Structures (logic gates, combinational logic circuits)
4) Digital Logic Structures (concept of memory, sequential logic circuits)
5) The von Neumann Model (instruction processing)
6) The von Neumann Model (I/O basics)
7) ISA Overview (Memory organization and registers)
8) ISA Overview (Memory organization and registers)
9) Review for the Midterm Exam
10) Assembly Language
11) Programming in C
12) Programming in C
13) Programming in C
14) Programming in C

Sources

Course Notes: Patt & Patel, Introduction to Computing Systems (2nd edition), MGraw Hill, 2004. ISBN 0-07-121503-4 (required) Mano & Kime, Logic and Computer Design Fundamentals (3rd edition), Prentice Hall, 2004. ISBN 013140539X (recommended)
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance % 0
Laboratory 0 % 0
Application 0 % 0
Field Work 0 % 0
Special Course Internship (Work Placement) 0 % 0
Quizzes 10 % 20
Homework Assignments 0 % 0
Presentation 0 % 0
Project 0 % 0
Seminar 0 % 0
Midterms 1 % 35
Preliminary Jury 0 % 0
Final 1 % 45
Paper Submission 0 % 0
Jury 0 % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Laboratory 0 0 0
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 5 10 50
Presentations / Seminar 0 0 0
Project 0 0 0
Homework Assignments 0 0 0
Quizzes 0 0 0
Preliminary Jury 0 0 0
Midterms 1 26 26
Paper Submission 0 0 0
Jury 0 0 0
Final 1 20 20
Total Workload 138

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering. 5
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions. 5
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose. 5
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction. 5
5) Select and use modern techniques and tools necessary for engineering applications. 5
6) Design and conduct experiments, collect data, and analyse and interpret results. 5
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.