COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGIES
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP2003 Data Structures and Algorithms (C++) Fall 3 2 2 6
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level: Bachelor
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TEVFİK AYTEKİN
Course Lecturer(s): Dr. Öğr. Üyesi ERKUT ARICAN
Dr. Öğr. Üyesi TEVFİK AYTEKİN
RA ÇİĞDEM ERİŞ
Course Objectives: This is an introductory course on common data structures that are used in computer engineering. After completing the course, the student will have knowledge of applying, implementing and analysis of basic data structures, including, lists, stacks, queues, hash tables and binary trees. Certain fundamental techniques, such as sorting, searching and recursion are also introduced.

Learning Outputs

The students who have succeeded in this course;
I. Describe and apply basic object oriented programming principles.
II. Implement basic data structures such as linked lists, stacks, queues, hash tables, and trees.
III. Analyze the efficiency of algorithms.
IV. Choose and design data structures for writing efficient programs and apply/report these methods in a group project.
V. Implement recursive algorithms.
VI. Describe and implement sorting algorithms on common data structures.
VII. Describe and implement search algorithms on common data structures.

Course Content

After course overview and review of object oriented programming and C++, complexity analysis of algorithms will be introduced then array-based lists, linked lists, recursion, stacks, and queues will be covered. After the midterm search algorithms and hashing will be introduced. Lastly, sorting algorithms, binary search trees and B-trees will be covered during the end of the course.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Course overview and review of object oriented programming and C++
2) Complexity analysis of algorithms
3) Array-based and linked lists
4) Array-based and linked lists
5) Recursion
6) Stacks
7) Queues
8) Midterm Exam
9) Searching algorithms
10) Hashing algorithms
11) Sorting algorithms
12) Sorting algorithms
13) Binary search trees
14) B-trees

Sources

Course Notes: D. S. Malik, Data Structures Using C++, 2e. Course Technology - Cengage Learning, 2010.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 0 % 0
Laboratory 0 % 0
Application 0 % 0
Field Work 0 % 0
Special Course Internship (Work Placement) 0 % 0
Quizzes 1 % 10
Homework Assignments 0 % 0
Presentation 0 % 0
Project 1 % 20
Seminar 0 % 0
Midterms 1 % 30
Preliminary Jury 0 % 0
Final 1 % 40
Paper Submission 0 % 0
Jury 0 % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Laboratory 14 5 70
Application 0 0 0
Special Course Internship (Work Placement) 0 0 0
Field Work 0 0 0
Study Hours Out of Class 0 0 0
Presentations / Seminar 0 0 0
Project 1 20 20
Homework Assignments 0 0 0
Quizzes 1 8 8
Preliminary Jury 0 0 0
Midterms 1 15 15
Paper Submission 0 0 0
Jury 0 0 0
Final 1 18 18
Total Workload 173

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To define concepts related to the latest knowledge, tools and other scientific resources for the teaching profession, educational technology and information technologies in terms of national and international standards.
2) To explain the main elements of teaching strategies, methods and techniques, material design and assessment and evaluation processes that affect the development of educational technology integration.
3) To develop competencies related to software languages, operating systems, computer networks and computer hardware.
3) To use the most appropriate curriculum frameworks to plan lessons and activities based on active and student-centered learning integrated with technology.
4) To use the most appropriate curriculum frameworks to plan lessons and activities based on active and student-centered learning integrated with technology.
5) To plan, implement and evaluate classroom activities that utilize cutting-edge technologies to foster creativity, problem solving and critical thinking using scientific methods.
6) To build strong theoretical and applied models to develop solutions to problems that focus on systems and human development within a learning organization. 
7) To review, evaluate and recommend strategies for technology integration based on the interests, needs, individual differences and developmental characteristics of students in primary and secondary education.
8) To work individually and collaboratively in a team to carry out activities related to educational technology, information technology and the teaching profession in an interdisciplinary approach.
9) To effectively use and evaluate educational technologies and appropriately designed instructional models as a means of achieving and meeting learning objectives and requirements.
10) To utilize effective metacognitive techniques to make the classroom a community of learners engaged in lifelong learning activities.
11) To prepare trainings and projects related to educational technology for the community and to provide counseling to individuals in enhancing learning through the appropriate use of technology.
12) To implement cost and time sensitive strategies to support individuals and organizations to carry out their work more effectively.
13) To equip teachers to be pioneers and models in the application of technology for educational purposes using ethical and legal standards and to keep pace with changing technology.
14) To investigate efficient design solutions and existing standards used today for educational technologies, curricula, innovations and outcomes related to work, school, education sector and virtual world.
15) To gain fluency in interpersonal communication, teaching frameworks and the use of different technologies in relation to national norms and laws.