ELECTRIC-ELECTRONIC ENGINEERING (ENGLISH, NON-THESIS)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE4614 Wireless Communications Fall 3 0 3 8
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Course Lecturer(s): Assoc. Prof. ALKAN SOYSAL
Course Objectives: This is a specialized course on wireless communications engineering. The course aims providing the students the knowledge to analyze, and design wireless communication systems.

Learning Outputs

The students who have succeeded in this course;
Upon completion of the course, the student will:
I. Understand and identify wireless communication systems.
II. Learn propagation, fading, cellular architecture, traffic models.
III. Recognize 3G and 4G technologies.

Course Content

This course introduces the student to wireless communication. The course starts with physical properties of wireless medium. Then it explains the cellular mobile structure. Several modern technologies, like diversity, advanced modulation techniques, 3G/4G/5G mobile systems will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Mobile Communications
3) Path Loss
4) Path Loss and Fading
5) Multipath Propagation
6) Traffic Analysis
7) Cell Planning
8) Problem Session and Midterm Exam
9) Multiple Access
10) Modulation and Demodulation
11) Diversity
12) 3G Technologies
13) 4G Technologies
14) Ad Hoc Communication

Sources

Course Notes: Introduction to Wireless and Mobile Systems / Edition 3 Dharma P. Agrawal and Qing-An Zeng
References: none

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 0 % 0
Laboratory 0 % 0
Application 0 % 0
Field Work 0 % 0
Special Course Internship (Work Placement) 0 % 0
Quizzes 0 % 0
Homework Assignments 0 % 0
Presentation 0 % 0
Project 1 % 30
Seminar 0 % 0
Midterms 1 % 30
Preliminary Jury 0 % 0
Final 1 % 40
Paper Submission 0 % 0
Jury 0 % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Laboratory
Application
Special Course Internship (Work Placement)
Field Work
Study Hours Out of Class
Presentations / Seminar 1 5
Project 4 20
Homework Assignments
Quizzes
Preliminary Jury
Midterms 7 27
Paper Submission
Jury
Final 8 47
Total Workload 141

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background and an ability to apply knowledge of mathematics, science, and engineering to identify, formulate, and solve problems of electrical and electronics engineering.
2) Be able to define, formulate and solve sophisticated engineering problems by choosing and applying appropriate analysis and modeling techniques and using technical symbols and drawings of electrical and electronics engineering for design, application and communication effectively.
3) Have an ability to design or implement an existing design of a system, component, or process to meet desired needs within realistic constraints (realistic constraints may include economic, environmental, social, political, health and safety, manufacturability, and sustainability issues depending on the nature of the specific design).
4) Elektrik ve elektronik mühendisliği yapabilmek ve yeni uygulamalara uyum gösterebilmek için gerekli yenilikçi ve güncel teknikler, beceriler, bilgi teknolojileri ve modern mühendislik araçlarını geliştirmek, seçmek, uyarlamak ve kullanmak.
5) Be able to design and conduct experiments, as well as to collect, analyze, and interpret relevant data, and use this information to improve designs.
6) Be able to function individually as well as to collaborate with others in multidisciplinary teams.
7) Be able to communicate effectively in English and Turkish (if he/she is a Turkish citizen).
8) Be able to recognize the need for, and to engage in life-long learning as well as a capacity to adapt to changes in the technological environment.
9) Have a consciousness of professional and ethical responsibilities as well as workers’ health, environment and work safety.
10) Have the knowledge of business practices such as project, risk, management and an awareness of entrepreneurship, innovativeness, and sustainable development.
11) Have the broad knowledge necessary to understand the impact of electrical and electronics engineering solutions in a global, economic, environmental, legal, and societal context.