BIOENGINEERING (ENGLISH, THESIS)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG3006 Population Genetics Fall
Spring
3 0 3 6
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level:
Mode of Delivery:
Course Coordinator : Dr. Öğr. Üyesi TUĞCAN DEMİR
Course Objectives:

Learning Outputs

The students who have succeeded in this course;

Course Content

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes:
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance % 0
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes % 0
Homework Assignments % 0
Presentation % 0
Project % 0
Seminar % 0
Midterms % 0
Preliminary Jury % 0
Final % 0
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 0
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK % 0
Total % 0

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) An understanding of the advanced concepts of Mathematics (calculus, analysis, linear algebra, differential equations, statistics), Natural Sciences (physics, chemistry, biology), and Engineering Sciences (electronics, material science, mechanics, thermal and fluid systems, control, signal and image processing, microcontrollers) relevant to Biomedical Engineering.
2) An ability to use at an advanced level the techniques, skills, and modern engineering tools (including software) necessary for engineering practice.
3) The capability of designing and conducting advanced experiments and of analyzing and evaluating data.
4) An ability to design the components of complex systems and processes under realistic constraints.
5) Acquisition of the skills needed to develop products (device, system, process) which are used in diagnosis, prevention, treatment and cure of diseases.
6) An ability to communicate knowledge and opinion efectively, both oral and in writing.
7) An ability to assume initiative and individual resposibility, and to cooperate with team-mates from other disciplines.
8) A kowledge of the current needs and problems of society, and an awareness of the social and global impact of engineering solutions.
9) Assimilation of the ethics and responsibilities of the profession.
10) Recognition of the importance of life-long learning, and participation therein.