MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BES3065 Childhood Nutrition Spring 2 0 2 4
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: Tr
Type of course: Non-Departmental Elective
Course Level: Bachelor
Mode of Delivery:
Course Coordinator : Dr. Öğr. Üyesi CAN ERGÜN
Course Objectives: The main aim of this course is to teach students the nutrition of infants and children in their early life.

Learning Outputs

The students who have succeeded in this course;
1- Basic food groups in adequate and balanced nutrition in childhood are learned.
2- To learn nutrition and factors affecting nutrition in children.
3- It is learned how to find solutions to the negative consequences of diseases such as undernutrition and overnutrition.
4- Case analyzes are made.

Course Content

Feeding of children according to different age groups and diseases in childhood period.

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes: 1. Shaw, V. (2015). Clinical paediatric dietetics (4th edition.). John Wiley & Sons Limited. 2. Karaağaoğlu, N. & Özel, H. G. (2021). Pediatride tıbbi beslenme tedavisi (Birinci basım.). Ankara Nobel Tıp Kitabevleri. 3. Mahan, [edited by] L. Kathleen, & Raymond, J. L. (2017). Krause’s food and the nutrition care proces (14th edition.). Elsevier
References: 1. Shaw, V. (2015). Clinical paediatric dietetics (4th edition.). John Wiley & Sons Limited. 2. Karaağaoğlu, N. & Özel, H. G. (2021). Pediatride tıbbi beslenme tedavisi (Birinci basım.). Ankara Nobel Tıp Kitabevleri. 3. Mahan, [edited by] L. Kathleen, & Raymond, J. L. (2017). Krause’s food and the nutrition care proces (14th edition.). Elsevier

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance % 0
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes % 0
Homework Assignments % 0
Presentation % 0
Project % 0
Seminar % 0
Midterms % 0
Preliminary Jury % 0
Final % 0
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 0
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK % 0
Total % 0

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 0 0 0
Application 14 4 56
Special Course Internship (Work Placement) 0 0 0
Field Work 14 4 56
Study Hours Out of Class 3 2 6
Presentations / Seminar 0 0 0
Project 0 0 0
Homework Assignments 0 0 0
Quizzes 0 0 0
Preliminary Jury 0 0 0
Midterms 1 2 2
Paper Submission 0 0 0
Jury 0 0 0
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4