CYBER SECURITY (ENGLISH, THESIS)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP5123 Computer Networks and Mobile Communications Spring 3 0 3 8
The course opens with the approval of the Department at the beginning of each semester

Basic information

Language of instruction: En
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ECE GELAL SOYAK
Course Lecturer(s): Dr. Öğr. Üyesi PINAR BÖLÜK
Dr. Öğr. Üyesi ECE GELAL SOYAK
Course Objectives: This course aims to equip students with a fundamental understanding of the principles behind wireless communications and networking, and the related problem solving skills using mathematics/engineering principles.

Learning Outputs

The students who have succeeded in this course;
I. Become familiar with the layered network architecture that is used to analyze computer networks, as well as the functionality of each layer.
II. Can analyze and interpret the performance of wireless networks.
III. Can understand the contributions and challenges in current and future network technologies.
IV. Become familiar with emerging network paradigms and technologies.
V. Can understand and evaluate research articles on networks in the literature, can report and present their key points.

Course Content

This course provides a comprehensive overview of computer networks and mobile communications technologies. The topics include computer networks, Internet, TCP/IP, transport layer protocols, routing layer protocols, medium access control protocols, wireless channel models, packet scheduling, multimedia networks, cellular networks (GSM, GPRS, CDMA, 3G, 4G, etc.), and wireless local area networks.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) An overview of computer networks, introduction to OSI architecture
2) Wireless communication fundamentals (analog and digital data transmission, fading, MIMO systems)
3) PHY layer (modulation and coding techniques, channel capacity); project definition
4) MAC layer (fixed vs. random access, TDMA, FDMA, CDMA)
5) Wireless Local Area Networks (WLAN), IEEE 802.11 Wi-Fi standard
6) Mobile wireless ad hoc networks (MANET)
7) Midterm exam
8) IP addressing, Internet, IPv6
9) Transport layer services (TCP, UDP, congestion control)
10) Cellular Networks (2G, 3G, 4G, etc)
11) Application layer protocols, Quality of Service (QoS)
12) Network management, security in computer networks
13) Emerging networks: sensor, cognitive, software defined networks (SDN), Internet of Things (IoT)
14) Research paper presentations

Sources

Course Notes: 1. W. Stallings, “Data and Computer Communications,” Prentice Hall, 8th edition, 2007 2. C. Beard and W. Stallings, “Wireless Communication Networks and Systems”, Pearson, Global edition, 2016 3. T. S. Rappaport, “Wireless Communications: Principles and Practice”, Prentice Hall, 2nd edition, 2002 4. A. L. Garcia, I. Widjaja, “Communication Networks”, Mc Graw Hill, 2nd edition, 2004 5. A. S. Tanenbaum, “Computer Networks”, Prentice Hall, 4th edition, 2002
References: Recent technical papers related to Wireless Networks

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance % 0
Laboratory % 0
Application % 0
Field Work % 0
Special Course Internship (Work Placement) % 0
Quizzes 5 % 15
Homework Assignments % 0
Presentation % 0
Project 1 % 15
Seminar % 0
Midterms 1 % 30
Preliminary Jury % 0
Final 1 % 40
Paper Submission % 0
Jury % 0
Bütünleme % 0
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 13 39
Laboratory
Application
Special Course Internship (Work Placement)
Field Work
Study Hours Out of Class 14 80
Presentations / Seminar
Project 12 36
Homework Assignments 1 3
Quizzes 1 1
Preliminary Jury
Midterms 2 11
Paper Submission 1 10
Jury
Final 1 10
Total Workload 190

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Being able to develop and deepen their knowledge at the level of expertise in the same or a different field, based on undergraduate level qualifications.
1) To be able to supervise and teach these values by observing social, scientific, cultural and ethical values in the stages of collecting, interpreting, applying and announcing the data related to the field.
1) Being able to independently carry out a work that requires expertise in the field.
1) To be able to critically evaluate the knowledge and skills acquired in the field of expertise and to direct their learning.
1) To be able to systematically transfer current developments in the field and their own studies to groups in and outside the field, in written, verbal and visual forms, by supporting them with quantitative and qualitative data.
2) To be able to interpret and create new knowledge by integrating the knowledge gained in the field with the knowledge from different disciplines,
2) To be able to develop strategy, policy and implementation plans in the fields related to the field and to evaluate the obtained results within the framework of quality processes.
2) To be able to critically examine social relations and the norms that guide these relations, to develop them and take action to change them when necessary.
2) To be able to use the theoretical and applied knowledge at the level of expertise acquired in the field.
2) To be able to develop new strategic approaches for the solution of complex and unpredictable problems encountered in applications related to the field and to produce solutions by taking responsibility.
2) To be able to comprehend the interdisciplinary interaction with which the field is related.
3) To be able to use the knowledge, problem solving and/or application skills they have internalized in their field in interdisciplinary studies.
3) Being able to lead in environments that require the resolution of problems related to the field.
3) To be able to solve the problems encountered in the field by using research methods.