ÖZEL GÜVENLİK VE KORUMA (TÜRKÇE) | |||||
Önlisans | TYYÇ: 5. Düzey | QF-EHEA: Kısa Düzey | EQF-LLL: 5. Düzey |
Ders Kodu | Ders Adı | Yarıyıl | Teorik | Pratik | Kredi | AKTS |
MAT4053 | Türevlenebilir Manifoldlar | Bahar | 3 | 0 | 3 | 6 |
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir. |
Öğretim Dili: | İngilizce |
Dersin Türü: | Non-Departmental Elective |
Dersin Seviyesi: | ÖNLİSANS |
Dersin Veriliş Şekli: | Yüz yüze |
Dersin Koordinatörü: | |
Opsiyonel Program Bileşenleri: | Yok |
Dersin Amacı: | Diferensiyellenebilir Manifoldlar dersi geometri alanında çalışacak Yüksek lisans ve Doktora öğrencilerinin çalışmalarına taban teşkil eden bilgileri içeren konuları kavratmayı amaçlamaktadır. |
Bu dersi başarıyla tamamlayabilen öğrenciler; Bu dersi başaran bir öğrenci 1)Bir küme üzerinde verilen diferensiyellenebilir yapıyı test edebilir. 2) Bir küme üzerinde Diferensiyellenebilir yapı örnekleri verebilir 3) Bir fonksiyonun Diferensiyellenebilirliğini kontrol edebilir, 4) İki manifold arasında dönüşümün türev dönüşümüne ilişkin problemleri çözebilir, 5) Bir manifold üzerine indirgenmiş topolojiye göre özellikleri kullanabilir, 6) Grassmann manifoldlarında koordinatlama yapabilir, boyutlarını hesaplayabilir, 7) Birimin parçalanmasını kullanarak varlık problemlerini anlayabilir, 8) Leibniz kuralı ile bir fonksiyonun türev dönüşümünü açıklayabilir, 9) İmmersiyonlar altında resimler olarak alt manifoldları açıklayabilir, 10) Bölüm manifoldlarının koordinatlamasını yapabilir, boyutlarını hesaplayabilir, 11)Bölüm manifold örneği olarak, klein şişesi, mobius bandını inşa edebilir. |
Diferensiyellenebilir (dif.bilir) fonksiyonlar, Atlas, Bir küme üzerinde dif.bilir yapı, yapı örnekleri, dif.bilir manifoldlar, dif.bilir fonksiyonlar, Bir manifold üzerine indirgenmiş topoloji, dif.bilir varyeteler, Grassmann manifoldları, Bir topolojik uzay üzerinde manifold yapısı, indirgenmiş topolojinin özellikleri, topolojik kısıtlamalar, Birimin parçalanması, Kısmi türevler, teğet vektörler, invers fonksiyon teoremi, Leibniz kuralı, İmmersiyonlar, altmanifoldlar, regüler altmanifoldlar, manifoldların bazı topolojik özellikleri, Submersionlar, submersionların fibreleri, Bölüm manifoldları, Transformasyon gurupları, Bölüm manifold örnekleri. |
Hafta | Konu | Ön Hazırlık |
1) | Önbilgiler | |
2) | Diferensiyellenebilir fonksiyonlar için bazı klasik bilgiler | |
3) | Atlas, Bir küme üzerinde Diferensiyellenebilir yapı | |
4) | Bir küme üzerinde Diferensiyellenebilir yapı örnekleri | |
5) | Diferensiyellenebilir manifoldlar | |
6) | Diferensiyellenebilir fonksiyonlar | |
7) | Bir manifold üzerine indirgenmiş topoloji | |
8) | Diferensiyellenebilir varyeteler, Grassmann manifoldları | |
9) | Bir manifold üzerine topolojik kısıtlamalar, Birimin parçalanması | |
10) | Bir topolojik uzay üzerinde manifold yapısı, indirgenmiş topolojinin özellikleri | |
11) | Kısmi türevler,teğet vektörler, türetilmiş lineer fonksiyonlar, invers fonksiyon teoremi, Leibniz kuralı | |
12) | İmmersiyonlar, altmanifoldlar, regüler altmanifoldlar, manifoldların bazı topolojik özellikleri | |
13) | Submersionlar, submersionların fibreleri, Bölüm manifoldları | |
14) | Transformasyon gurupları,Bölüm manifold örnekleri |
Ders Notları / Kitaplar: | Differentiable Manifolds an Introduction ,F Brickell, R. S. Clark. |
Diğer Kaynaklar: | . |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Ara Sınavlar | 2 | % 45 |
Final | 1 | % 55 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 45 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 55 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | Süre (Saat) | İş Yükü |
Ders Saati | 14 | 3 | 42 |
Sınıf Dışı Ders Çalışması | 7 | 2 | 14 |
Ara Sınavlar | 2 | 20 | 40 |
Final | 1 | 30 | 30 |
Toplam İş Yükü | 126 |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı | |
1) | Özel güvenlik alanındaki teorik bilgileri çalışma hayatında kullanabilme becerisini geliştirir. | |
2) | Ekip halinde çalışma becerisini geliştirir. | |
3) | Özel güvenlik uygulamalarında karşılaşılan sorunları tanımlama, analiz etme ve çözüm önerileri getirtebilme becerisini geliştirir. | |
4) | Meslek etik ilkelerine uygun davranma bilincini geliştirir. | |
5) | Yaşam boyu öğrenme bilincini ve fiziksel gelişimi geliştirir. | |
6) | Özel güvenlik ile ilgili güncel gelişmeler ve sorunlar hakkında bilgi sahibi olma becerisini geliştirir. | |
7) | Özel güvenlik alanında mesleki yasal mevzuatı kavrayabilir. | |
8) | İş yaşamında etkin iletişim kurma becerisine sahip olur. | |
9) | Özel güvenlik teknolojisi araçları ile diğer mesleki araçları ve teknikleri kullanabilme becerisine sahip olur. | |
10) | Özel güvenlik ile ilgili süreçleri yönetme becerisi kazanır. | |
11) | Girişimcilik becerisine sahip olur. | |
12) | Özel güvenlik hakkında yabancı dil bilgi ve becerisine sahip olur. |