AVRUPA BİRLİĞİ İLİŞKİLERİ
Lisans TYYÇ: 6. Düzey QF-EHEA: 1. Düzey EQF-LLL: 6. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
MAT4052 Komutatif Cebir Güz
Bahar
3 0 3 6
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: İngilizce
Dersin Türü: Non-Departmental Elective
Dersin Seviyesi: LİSANS
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü:
Opsiyonel Program Bileşenleri: Yok
Dersin Amacı: Matematik lisans öğrencilerine değişmeli cebir konusunda hem teorik hem de hesaplamalı arkaplanı sağlamak.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
Bu dersi başarıyla bitiren bir öğrenci değişmeli cebir konusundaki temel kavramları öğrenmiş olacaktır.

Dersin İçeriği

Değişmeli gruplar, halkalar ve cisimler. Vektör uzayları ve lineer dönüşümler. Bazlar ve lineer dönüşümlerin matris temsilleri. Polinom halkaları. İdealler, asal ve maksimal idealler. Polinomların bölüm halkaları. Polinom halkaları üzerindeki modüller. Asal ve temel idealler. İdealler monoidinde idealleri çarpanlarına ayırma. İdeallerin localizasyonu. Sıfırın bölenleri, tamlık bölgeleri ve bölüm halkaları. Tek çarpanlama bölgeleri ve Euclid bölgeleri. Bir idealin kökü. Bir halkanın sıfır-kökü ve Jacobson kökü. Bir halkanın ideal kafesindeki işlemler. Polinom cebirlerinde klasik Euclid bölüm algoritması. Tekterimli elemanların sıralanması ve diğer bölüm algoritmaları. Cebirin Temel Teoremi. Polinom cebirlerinde ideallerin sonlu üretilmesi. Gröbner bazları ve Buchberger algoritması. Mödüller arasındaki morfizmalar. Morfizmaların çekirdek ve görüntüleri. Alt-modüller ve bölüm modülleri. Yokedici idealler. Modüllerin iç ve dış toplamları. Modüllerin tensör çarpımları. Altmodül ve ideal zincirleri. Artinyen ve Noetheryen halka ve modüller.

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Değişmeli gruplar, halkalar ve cisimler.
2) Vektör uzayları ve lineer dönüşümler. Bazlar ve lineer dönüşümlerin matris temsilleri.
3) Polinom halkaları. İdealler, asal ve maksimal idealler. Polinomların bölüm halkaları. Polinom halkaları üzerindeki modüller.
4) Asal ve temel idealler. İdealler monoidinde idealleri çarpanlarına ayırma. İdeallerin localizasyonu.
5) Sıfırın bölenleri, tamlık bölgeleri ve bölüm halkaları. Tek çarpanlama bölgeleri ve Euclid bölgeleri.
6) Bir idealin kökü. Bir halkanın sıfır-kökü ve Jacobson kökü. Bir halkanın ideal kafesindeki işlemler.
7) Sınav öncesi işlenmiş konuların tekrarı ve birinci ara sınav.
8) Polinom cebirlerinde klasik Euclid bölüm algoritması. Tekterimli elemanların sıralanması ve diğer bölüm algoritmaları.
9) Cebirin Temel Teoremi. Polinom cebirlerinde ideallerin sonlu üretilmesi.
10) Gröbner bazları ve Buchberger algoritması. Örnekler ve hesaplamalar.
11) Gröbner bazları ve Buchberger algoritması. Örnekler ve hesaplamalar.
12) Sınav öncesi işlenmiş konuların tekrarı ve ikinci ara sınav.
13) Mödüller arasındaki morfizmalar. Morfizmaların çekirdek ve görüntüleri. Alt-modüller ve bölüm modülleri. Yokedici idealler. Örnekler.
14) Modüllerin iç ve dış toplamları. Modüllerin tensör çarpımları.Altmodül ve ideal zincirleri. Artinyen ve Noetheryen halka ve modüller.

Kaynaklar

Ders Notları / Kitaplar: Instructor's own lecture notes.
Atiyah and MacDonald, "Introduction to Commutative Algebra"
Diğer Kaynaklar:

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Küçük Sınavlar 3 % 10
Ara Sınavlar 2 % 40
Final 1 % 50
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 50
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 50
Toplam % 100

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı Süre (Saat) İş Yükü
Ders Saati 14 3 42
Sınıf Dışı Ders Çalışması 14 2 28
Küçük Sınavlar 3 3 9
Ara Sınavlar 2 10 20
Final 1 26 26
Toplam İş Yükü 125

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) AB çalışmaları alanında bilimsel metodları kullanarak veri inceleme, yorumlama ve kanıya varma becerisinin kazanılması. 2
2) AB çalışmaları alanında görev yapan yetkilileri ve kurumları bilgilendirme, nicel ve nitel verilerle desteklenen çözüm önerileri üretme ve fikir geliştirme becerisinin kazanılması. 2
3) AB çalışmalarının yararlandığı diğer disiplinlerden (siyaset bilimi, uluslararası ilişkiler, hukuk, ekonomi, sosyoloji vb.) faydalanabilme ve bu disiplinler hakkında genel bilgi sahibi olma. 3
4) Avrupa Birliği ve AB – Türkiye İlişkileri hakkındaki güncel gelişmeleri değerlendirebilme. 2
5) Yazılı ve sözlü iletişimde ve özellikle AB çalışmaları alanında en iyi şekilde İngilizce kullanabilme. 1
6) AB Çalışmaları alanında veri toplama, yorumlama, dağıtma ve uygulama süreçlerinde etik, toplumsal ve bilimsel değerler uyarınca hareket etmek. 1
7) Avrupa Birliği’nin temellerini, tarihsel gelişimini, kurumlarının işleyişlerini, karar alma sistemini ve ortak politikalarını kavrayabilmek ve analiz edebilmek. 2
8) AB'nin içinden geçmekte olduğu yasal, mali ve kurumsal değişiklikleri değerlendirebilmek. 2
9) AB genişleme sürecinin ana aktör ve kurumlarını tanıyarak bu sürecin dinamiklerini kavrayabilmek ve Türkiye’nin üyelik sürecini daha önceki genişleme örnekleri ile karşılaştırabilmek. 2
10) AB’nin Türkiye’nin siyasi, toplumsal ve ekonomik sistemlerine etkisini analiz edebilmek. 2
11) AB 'proje kültürü' ile tanışmak ve AB formatında proje hazırlamaya yönelik becerileri kazanmak. 2
12) Uluslararası İlişkiler kuramlarını ve kavramlarını AB'nin tarihi gelişimi ile ilişkilendirebilme. 3