GEN4053 Transgenic TechnologyBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEN4053 Transgenic Technology Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: There is none.
Course Objectives: The objective of the course is to provide information about transgenic technology. Besides technical information; the use, risk assessment and biosafety regulations of transgenic organisms will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1. Discuss the technology behind transgenic organisms.
2. Recognize how genetically modified animals, plants and microorganisms are achieved.
3. Discuss the reasons of gene manipulation.
4. Define the application areas of trangenic organisms.
5. Recognize the benefits and risks of transgenic organisms.
6. Perform risk assessment.
7. Discuss the biosafety regulations.

Course Content

Bitki, hayvan ve mikroorganizmalarda gen transfer yöntemleri; transgenik teknolojinin uygulama alanları; risk analizi ve biyogüvenlik düzenlemeleri üzerine tartışmalar.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Genetic Engineering and Biotechnology: Introduction Reading
2) Host-vector systems I Reading
3) Host-vector systems II Reading
4) Transgenic plant technology I Reading
5) Transgenic plant technology II Reading
6) Applications of transgenic plants I Reading
7) Applications of transgenic plants II Reading
8) Applications of transgenic plants III Reading
9) Overview Reading
10) Production of transgenic animals I Reading
11) Production of transgenic animals II Reading
12) Applications of transgenic animals Reading
13) Diagnosis of diseases and gene therapy Reading
14) Recent improvements in transgenic technology Reading

Sources

Course Notes / Textbooks: Relevant reviews, research papers and hand-outs will be supplied.
References: 1)Principles of gene manipulation and genomics, Primrose SB and Tywan RM, 7th edition, 2006, Blacwell Publishing, ISBN: 9781405135443.

2)Molecular Biotechnology: principles and applications of recombinant DNA, Glick BR and Pasternak JJ.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Presentation 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.