SCHOOL OF PHARMACY | |||||
Bachelor | TR-NQF-HE: Level 7 | QF-EHEA: Second Cycle | EQF-LLL: Level 7 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
PHY2003 | Modern Physics | Spring | 3 | 0 | 3 | 4 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assoc. Prof. MUHAMMED AÇIKGÖZ |
Recommended Optional Program Components: | None |
Course Objectives: | To introduce the fundamentals of relativity, Quantum physics, atomic physics and nuclear physics. |
The students who have succeeded in this course; The students who succeeded in this course; will be able to understand the special theory of relativity. will be able to formulate the Lorentz transformation equations. will be able to formulate relativistic linear momentum and energy. will be able to discriminate Quantum physics from classical physics. will be able to formulate wave mechanics. will be able to apply Schrödinger equation to some applications. will be able to learn the elementary concepts of Quantum physics. will be able to define hydrogen atom concept in Quantum physics. will be able to apply quantum theory to nuclear structure. will be able to discriminate nuclear reactions; fission and fusion. will be able to apply quantum theory to nuclear reactions. will be able to apply quantum theory to elementary particles and their interactions. |
In this course theory of relativity; the Lorentz transformation equations; basics of Quantum mechanics; Schrödinger equation; principles of the atomic physics and nuclear physics will be taught. |
Week | Subject | Related Preparation |
1) | Introduction to Modern Physics, and Theory of Relativity. | |
2) | Theory of Relativity. | |
3) | Quantum Theory of Light; Introduction to the theory and results of waves. | |
4) | Quantum Physics; The beginnings of quantum theory | |
5) | Quantum Physics; A basic introduction to quantum mechanics and wave mechanics. | |
6) | Quantum Physics; probabilities and normalization; SHO | |
7) | Schrödinger Equation and Quantum Mechanics | |
8) | Atomic Physics; atomic structure | |
9) | Atomic Physics; molecular structure | |
10) | Nuclear Physics; Nuclear structure and Nuclear binding energy, nuclear force, radioactivity | |
11) | Nuclear Physics applications; Nuclear reactions; fission and fusion; Radiation detectors and applications | |
12) | Selected Topics | |
13) | Selected Topics | |
14) | Selected Topics |
Course Notes / Textbooks: | 1) Physics for Scientists and Engineers, eighth editions (2010) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning. 2) Physics for Scientists and Engineers with Modern Physics, sixth editions (2006) by Raymond A. SERWAY and John W. Jewett, Jr., Brooks/Cole- Thomson Learning. |
References: | 1) Physics, Principles with applications, 5th edition (1998) by Douglas C. GIANCOLI, Prentice Hall, Upper Saddle River, New Jersey 07458 2) Fundamentals of Physics, 5th edition (1997) by David HALLIDAY, Robert RESNICK and Jearl WALKER, John Wiley &Sons. Inc. New York. |
Semester Requirements | Number of Activities | Level of Contribution |
Quizzes | 2 | % 10 |
Midterms | 1 | % 40 |
Final | 1 | % 50 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 2 | 28 |
Midterms | 1 | 14 | 14 |
Final | 1 | 16 | 16 |
Total Workload | 100 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Develops the ability to identify problems in the field of pharmacy, formulate hypotheses by synthesizing these issues, and generate solutions using various observational, experimental, and clinical methods. | |
2) | Demonstrates the ability to analyze and compile information and data related to pharmacy, and clearly present these, along with the supporting evidence, information, and opinions, in written and oral forms. Gains knowledge and skills in quantitative and qualitative data collection, as well as in methods used for drug development, pharmacological testing, and clinical studies. | |
3) | Develops effective communication skills and gains proficiency in speaking, writing, and reading in both English and Turkish. Achieves professional-level command of English in their field. Works with a sense of professional ethics and responsibility, respecting human values and patient rights. Adheres to ethical principles regarding clinical studies and patient confidentiality. | |
4) | Develops critical, creative, and analytical thinking skills. Learns techniques used in drug development and manufacturing processes, gaining knowledge and proficiency in these areas. Acquires knowledge of theories and practices in pharmaceutical sciences, pharmacology, and clinical pharmacy, and establishes connections between these theories and their applications. | |
5) | Effectively utilizes computer systems and pharmaceutical databases to solve problems related to drug development, disease diagnosis, and treatment. Conducts research in scientific literature, accesses information, and stays updated on the latest advancements in pharmacy and pharmaceutical technology. Recognizes national and international health issues and develops solutions using a scientific approach. | |
6) | Develops the ability to work independently, make decisions, and manage projects. Takes responsibility as part of a healthcare team and contributes effectively to interdisciplinary studies. These competencies aim to equip individuals with the knowledge, skills, and ethical values essential for the pharmacy profession. |