PHY1002 Physics IIBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
PHY1002 Physics II Spring 3 2 4 7

Basic information

Language of instruction: English
Type of course: Must Course
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. LÜTFİ ARDA
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Prof. Dr. LÜTFİ ARDA
Dr. Öğr. Üyesi DOĞAN AKCAN
RA MEHMET CAN ALPHAN
RA MUHAMMED CEMAL DEMİR
Assoc. Prof. OZAN AKDOĞAN
Prof. Dr. NAFİZ ARICA
Recommended Optional Program Components: None
Course Objectives: To introduce the fundamentals of electrostatics and magnetostatics.

Learning Outcomes

The students who have succeeded in this course;
1 will be able to describe properties of charged particles formulate the electric force between charged particles, apply vector notation to the concept of electric fields, calculate electric field due to continous charge distribution, draw electric field lines of a charged distribution.
2 will be able to describe electric flux, apply Gauss’s Law to continuous charge distribution, describe conductors in electrostatic equilibrium.
3 will be able to formulate the electric potential of point charges and continuous charge distributions, formulate the relation between electric field and electric potential, calculate electric potential due to continous charge distribution.
4 will be able to calculate the capacitance of different capacitor combinations.
5 will be able to describe and calculate resistance, current and voltage.
6 will be able to analysis DC circuits, apply Kirchhoffs Rules to DC Electric Circuits.

Course Content

In this course Electric Field, Gauss’s Law, Electric Potential, Capacitance and Dielectrics, Direct Current Circuits, and magnetic fields will be taught.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Electric Fields, Ch. 23, Properties of Electric Charges, Insulator and Conductors, Coulomb`s Law, The Electric Field
2) Electric Fields, Ch. 23, Electric Field of a Continuous Charge Distribution, Electric Field Lines, Motion of Charged Particles in a Uniform Electric Field.
3) Gauss`s Law, Ch. 24, Electric Flux, Gauss, s Law, Application of Gauss`s Law to Charged Insulator.
4) Gauss`s Law, Ch. 24, Conductors in Electrostatic Equilibrium, Experimental verification of Gauss`s Law.
5) Electric Potential, Ch 25, Potential Difference and Electric Potential, Potential Differences in a Uniform Electric Field
6) Electric Potential, Ch 25, Electric Potential and Potential Energy Due to Point Charges, Obtaining the Value of the Electric Field From the Electric Potential.
7) Electric Potential, Ch 25, Electric Potential Due to Continuous Charge Distributions, Electric Potential Due to a Charged Conductor, The Millikan Oil-Drop Experiment, Applications of Electro Statics.
8) Capacitance and Dielectrics Ch 26, Definition of Capacitance, Calculating Capacitance, Combination of Capacitors
9) Capacitance and Dielectrics Ch 26, Energy Stored in a Capacitors with Dielectrics, Electric Dipole in an Electric Field
10) Capacitance and Dielectrics Ch 26, An Atomic Description of Dielectrics.
11) Current and Resistance Ch 27, Electric Current, Resistance and Ohm`s Law,
12) A Model For Electric Conduction.Resistance and Temperature, Superconductors, Electric Energy and Power.
13) Direct Current Circuits, Ch 28, Electromotive Force, Resistors in Series and in Parallel.
14) Kirchhoff`s Rules, RC Circuits. charging a capacitor, discharging a capacitor, the galvanometer, the ammeter, the voltmeter.

Sources

Course Notes / Textbooks: 1) Physics for Scientists and Engineers, 9th Edition (2014) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning.
2) Young & Freedman’s University Physics 14th edition
References: 1) Physics for Scientists and Engineers, eighth editions (2010) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning.
2) Physics for Scientists and Engineers with Modern Physics, sixth editions (2006) by Raymond A. SERWAY and John W. Jewett, Jr., Brooks/Cole- Thomson Learning.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Laboratory 7 % 15
Quizzes 5 % 20
Midterms 1 % 20
Final 1 % 45
Total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 4 56
Laboratory 7 3 21
Study Hours Out of Class 14 6 84
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 170

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems. 5
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems. 5
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. 4
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.