INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4408 OBASE Business Intelligence Fall 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ADEM KARAHOCA
Course Lecturer(s): Prof. Dr. ADEM KARAHOCA
Recommended Optional Program Components: None
Course Objectives: The course provides the student with an introduction to the basic and more advanced concepts of Business Intelligence and discusses the architectures of possible solutions.

Learning Outcomes

The students who have succeeded in this course;
1. Define basic concepts and categories of business intelligence and business intelligence market
2. Describe data warehouse architectures
3. Define relational models, construct normalized data models and identify queries to data sources with SQL.
4. Discuss case studies in terms of business intelligence concepts
5. Specify data mining and clustering methods
6. Describe neural networks
7. Define decision trees
8. Identify business intelligence front end applications
9. Prepare project presentations

Course Content

Concepts of business intelligence, data warehousing, rdbms concepts, modeling the dimensions and creating the aggregations, panel - case studies, introduction to data mining unsupervised methods, supervised methods, business intelligence front end

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Business Intelligence
2) Data Warehousing
3) RDBMS Concepts I
4) RDBMS Concepts II
5) Modeling the Dimensions and Creating the Aggregations
6) Modeling the Dimensions and Creating the Aggregations
7) Panel - Case Study: Migros
8) Introduction to Data Mining Unsupervised Methods
9) Introduction to Data Mining Unsupervised Methods
10) Supervised Methods
11) Supervised Methods
12) Business Intelligence Front End
13) Project Presentations
14) Panel – Case Study: Turkcell

Sources

Course Notes / Textbooks: Corporate Information Factory, W. H. Inmon, Claudia Imhoff, Ryan Sousa, 2001, 0471399612

Business intelligence : a managerial approach, E. Turban, R. Sharda, J.E. Arnsson, D. King, 2007, 013234761X

The Data Warehouse Toolkit, R. Kimball, M. Ross, 1996, 0471153370
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Project 1 % 35
Midterms 1 % 15
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 25
PERCENTAGE OF FINAL WORK % 75
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 5 15
Project 1 20 20
Midterms 1 18 18
Final 1 20 20
Total Workload 115

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments