INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4931 Special Topics in Software Engineering I Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. MEHMET ALPER TUNGA
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
Recommended Optional Program Components: None
Course Objectives: Study of various topics, like advanced design patterns with current technical developments in software engineering. Applications in software engineering concepts with enterprise systems and their solution techniques.

Learning Outcomes

The students who have succeeded in this course;
1. Describe SOA basics
2. Describe timeline of SOA
3. Analyze web services framework
4. Define SOA principles
5. Analyze SOA layers
6. Analyze SOA lifecycle phases
7. Describe service analysis
8. Describe service modeling
9. Analyze service oriented design

Course Content

The course content is composed of introducing service oriented architecture (soa), evolution of soa, the web services framework, web services and contemporary soa, principles of service orientation, soa application and business service layers, soa orchestration service layer and agnostic services, soa delivery lifecycle phases, service oriented analysis, service modeling, service oriented design, wsdl.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introducing Service Oriented Architecture (SOA)
2) Evolution of SOA
3) The Web Services Framework
4) Web Services and Contemporary SOA
5) Principles of Service Orientation
6) SOA Application and Business Service Layers
7) SOA Applications / Midterm I
8) SOA Orchestration Service Layer and Agnostic Services
9) SOA Delivery Lifecycle Phases
10) Service Oriented Analysis
11) Service modeling
12) Service Modeling / Midterm II
13) Service Oriented Design
14) WSDL

Sources

Course Notes / Textbooks: Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Thomas Erl 978-0131858589
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Homework Assignments 2 % 10
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 5 15
Homework Assignments 2 5 10
Quizzes 2 3 6
Midterms 2 14 28
Final 1 17 17
Total Workload 118

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments