INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4531 Unix Programming Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. MEHMET ALPER TUNGA
Recommended Optional Program Components: None.
Course Objectives: The students will have the ability of developing BASH scripts for systems programming in UNIX and UNIX based operating systems with the help of various tools such as grep, awk and sed. The course also provides the students with the other UNIX programming utilities such as socket programming, writing manuals and creating packages.

Learning Outcomes

The students who have succeeded in this course;
1. Define of basic concepts and categories of operating systems and UNIX
2. Use basic commands of Unix
3. Describe the concept of grep, awk and sed
4. Describe the Unix and shell environment and fundamentals of shell programming in Unix
5. Define the basic structures such as loops, control structures of BASH and developing system programming scripts through BASH
6. Prepare makefiles in Unix environment
7. Describe the fundamentals of Gnome programming
8. Create RPM packages
9. Prepare manual pages
10. Define the fundamentals of socket programming

Course Content

The course content is composed of unix commands, the grep family, introducing awk, introducing sed,
environment and shell variables, shell (bash) programming, writing makefile, gnome programming, creating rpm packages, writing manual pages, sockets.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Unix Commands
3) The grep Family
4) Introducing awk
5) Introducing sed
6) Environment and Shell Variables
7) Shell (BASH) Programming
8) Shell (BASH) Programming
9) Shell (BASH) Programming
10) Writing Makefile
11) Gnome Programming
12) Creating RPM Packages
13) Writing Manual Pages
14) Sockets

Sources

Course Notes / Textbooks: Neil Matthew and Richard Stones, Beginning Linux Programming, Wiley, 2008, ISBN 13: 978-0-470-14762-7

David Tansley, Linux & Unix Shell Programming, Addison-Wesley, 2000, ISBN 10: 0-201-67472-6
References: Yok - None.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 20
Homework Assignments 2 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 5 15
Homework Assignments 1 8 8
Quizzes 5 3 15
Midterms 1 17 17
Final 1 18 18
Total Workload 115

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments