SEN3006 Software ArchitectureBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN3006 Software Architecture Fall 2 2 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
RA MERVE ARITÜRK
RA SEVGİ CANPOLAT
Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Instructor DUYGU ÇAKIR YENİDOĞAN
Dr. Öğr. Üyesi TAMER UÇAR
Recommended Optional Program Components: None.
Course Objectives: Provides in depth the concepts, principals, methods, and best practices in software architectures; emphasizes on team projects to architect domain-specific architectures, service-oriented architectures, product-line architectures, adaptive and generative architectures. This course provides an overview for software engineering concepts and architectures. Students will work in small groups to design and implement software applications. The course will also provide a high-level overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality and testing.

Learning Outcomes

The students who have succeeded in this course;
1. Define the phases of the software development lifecycle
2. Describe the difference between project and process metrics
3. Define the terms version control and change control
4. Apply the methods for performing requirements elicitation and requirements analysis
5. Discuss important design principles such as information hiding and abstraction
6. Discuss the differences between structured and object oriented analysis and design
7. Define key testing terms such as black box testing and white box testing
8. Construct the activities of the software lifecycle for a small to medium software project

Course Content

The course content is composed of product, process, project management, metrics, project planning, systems engineering, analysis concepts, analysis modeling, risk, sqa, project scheduling, scm, design concepts, architecture design, user interface design, technical metrics, oo concepts, ooa, ood, software testing techniques and strategies, software maintenance, software testing techniques and strategies , oo metrics and a case study in software architecture – the a-7e operational flight program.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Product, Process
2) Project Management, Metrics, Project Planning
3) Systems Engineering
4) Analysis Concepts, Analysis Modeling
5) Risk, SQA, Project Scheduling, SCM
6) Design Concepts
7) Architecture Design, User Interface Design, Other Design Topics
8) Design Topics
9) Technical Metrics, OO Concepts, OOA, OOD
10) Software Testing Techniques and Strategies
11) Software maintenance, Software Testing Techniques and Strategies , OO Metrics
12) OO Metrics
13) A Case Study in Software Architecture – the A-7E Operational Flight Program
14) Project Presentations

Sources

Course Notes / Textbooks: Craig Larman
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3/E
ISBN-10: 0131489062 | ISBN-13: 9780131489066

Roger S. Pressman
Software Engineering: A Practitioner's Approach, Sixth
Edition , McGraw-Hill

Software Architecture in Practice, 2/e
Bass, Clements & Kazman
2003 | Addison-Wesley Professional | Cloth; 560 pp
ISBN-10: 0321154959 | ISBN-13: 9780321154958
References: Yok - None.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Project 1 % 15
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 35
PERCENTAGE OF FINAL WORK % 65
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Study Hours Out of Class 2 20 40
Project 1 15 15
Quizzes 2 10 20
Midterms 1 16 16
Final 1 20 20
Total Workload 167

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.