INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN3003 Software Project Management Fall 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Course Lecturer(s): Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Dr. Öğr. Üyesi PINAR BÖLÜK
Recommended Optional Program Components: None
Course Objectives: Defining the software project lifecycle and defining the usual stages of a software project management. Implementing a variety of cost benefit evaluation techniques for choosing among competing project proposals and evaluating the risk. The course covers project planning, program management, project evaluation, software effort estimation, activity planning, risk management, monitoring and controlling, managing contracts, managing people and organizing teams, and software quality.


Learning Outcomes

The students who have succeeded in this course;
1. Describe the contents of a typical business plan
2. Construct project planning in an organized step-by-step manner.
3. Select an appropriate process model
4. Describe the software effort estimation
5. Produce an activity plan for a project
6. Identify the factors putting a project at risk
7. Identifying the resources required for a project
8. Manage the progress of projects
9. Select new staff into a project.
10. Select the best communication genres to support the coordination needs of a project.

Course Content

The course content is composed of the basics of software project management, project evaluation and programme management, project planning, selection of appropriate project approach, software effort estimation, activity planning, risk management, resource allocation, monitoring and control, managing contracts, managing people in software environment, working in teams, software quality.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Software Project Management
2) Project Evaluation and Programme Management
3) An Overview of Project Planning
4) Selection of Appropriate Project Approach
5) Software Effort Estimation
6) Activity Planning
7) Activity Planning
8) Risk Management
9) Resource Allocation
10) Monitoring and Control
11) Managing Contracts
12) Managing People in Software Environment
13) Working in Teams
14) Software Quality

Sources

Course Notes / Textbooks: Bob Hughes, Mike Cotterell, Software Project Management, McGraw Hill, 5th Edition.

Harold Kerzner, Project Management: A Systems Approach to Planning, Scheduling, and Controlling, John Wiley & Sons.
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 25
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 25
PERCENTAGE OF FINAL WORK % 75
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 5 15 75
Project 1 25 25
Midterms 1 14 14
Final 1 20 20
Total Workload 176

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments