NEW MEDIA | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
SEN2022 | Software Engineering Analysis and Design | Spring | 3 | 0 | 3 | 7 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assoc. Prof. AYLA GÜLCÜ |
Recommended Optional Program Components: | None |
Course Objectives: | After taking this course, the student will have the ability of analyzing and designing a software development process such as defining scope, describing problems, gathering system requirements, constructing data, object and process models and identifying alternative solutions to apply feasibility analysis for the decision-making purposes. In this course, you will engage in various methodologies, processes, techniques, and tools used to handle the phases of the Software Development Life Cycle (SDLC). Teaching Methods and Techniques Used in the Course: Lecture, reading, implementation, individual study, problem solving |
The students who have succeeded in this course; At the end of the course, the students will be able to: 1. Describe systems analysis and design concepts for information systems; 2. Describe the essential phases of systems development; 3. Describe project management tools and a number of systems analysis approaches for solving information system problems; 4. Define scope of information system problems; 5. Identify the problems, opportunities and directives that trigger the project; 6. Define functional and nonfunctional system requirements, apply fact-finding technique; 7. Define actors and use cases, construct context and use case model diagrams; 8. Construct data models and UML diagrams; 9. Define the basic concepts and constructs of a process model and construct context, data flow, event and system diagrams; 10. Identify alternative system solutions, define six types of feasibility, prepare cost-benefit analyses and system proposal reports. |
The course content is composed of the basic concepts of systems analysis and design, the components of information systems, methods for developing information systems, project management, systems analysis approaches, scope definition phase, problem analysis phase , requirements analysis phase, use-cases, data modeling and analysis, process modeling, feasibility analysis and the system proposal. |
Week | Subject | Related Preparation |
1) | Introduction to Systems Analysis and Design | |
2) | Systems Analysis and Design for Information Systems | |
3) | Project Management, Scope Definition | |
4) | Problem Analysis, Scheduling Tools | |
5) | Problem Discovery, Requirements Discovery, Requirements Analysis | |
6) | Use Cases and Use Case Diagrams | |
7) | Use Case Descriptors | |
8) | Structural Modeling | |
9) | Midterm Exam | |
10) | Behavioral Modeling | |
11) | Validating and Evolving Analysis Models | |
12) | Physical Architecture Layer Design | |
13) | Construction: Programming, Documenting and Testing | |
14) | Post implementation activities |
Course Notes / Textbooks: | Textbook: Systems Analysis and Design: An Object-Oriented Approach with UML, 6th Edition Alan Dennis, Barbara Wixom, David Tegarden, Wiley, ISBN: 978-1-119-56121-7 October 2021 (5th Edition can also be used) Supplementary Resource: Systems Analysis & Design for the Global Enterprise 7ed, Lonnie D. Bentley and Jeffrey L. Whitten, McGraw Hill, ISBN-13 978-0-07-110766-2, 2007 |
References: | Yok |
Semester Requirements | Number of Activities | Level of Contribution |
Quizzes | 5 | % 20 |
Homework Assignments | 3 | % 15 |
Midterms | 1 | % 25 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
Total | % 100 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To be able to critically interpret and discuss the theories, the concepts, the traditions, and the developments in the history of thought which are fundamental for the field of new media, journalism and communication. | |
2) | To be able to attain written, oral and visual knowledge about technical equipment and software used in the process of news and the content production in new media, and to be able to acquire effective abilities to use them on a professional level. | |
3) | To be able to get information about the institutional agents and generally about the sector operating in the field of new media, journalism and communication, and to be able to critically evaluate them. | |
4) | To be able to comprehend the reactions of the readers, the listeners, the audiences and the users to the changing roles of media environments, and to be able to provide and circulate an original contents for them and to predict future trends. | |
5) | To be able to apprehend the basic theories, the concepts and the thoughts related to neighbouring fields of new media and journalism in a critical manner. | |
6) | To be able to grasp global and technological changes in the field of communication, and the relations due to with their effects on the local agents. | |
7) | To be able to develop skills on gathering necessary data by using scientific methods, analyzing and circulating them in order to produce content. | |
8) | To be able to develop acquired knowledge, skills and competence upon social aims by being legally and ethically responsible for a lifetime, and to be able to use them in order to provide social benefit. | |
9) | To be able to operate collaborative projects with national/international colleagues in the field of new media, journalism and communication. | |
10) | To be able to improve skills on creating works in various formats and which are qualified to be published on the prestigious national and international channels. |