SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN2212 Data Structures and Algorithms II Spring 2 2 3 7

Basic information

Language of instruction: English
Type of course: Must Course
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BETÜL ERDOĞDU ŞAKAR
Course Lecturer(s): Dr. Öğr. Üyesi BETÜL ERDOĞDU ŞAKAR
Dr. Öğr. Üyesi YÜCEL BATU SALMAN
RA SEVGİ CANPOLAT
RA MERVE ARITÜRK
Recommended Optional Program Components: None
Course Objectives: The objective of this course is to analyze data structures and algorithms used in software engineering in detail. After completing the course, the student will have knowledge of applying, implementing and analysis of data structures, including, trees, binary search trees, balanced search trees, heaps and graphs. Certain fundamental techniques, such as sorting, hashing and greedy algorithms are also taught.

Learning Outcomes

The students who have succeeded in this course;
The students who have succeeded in this course;
1) Describe and apply basic object oriented programming principles.
2) Implement basic data structures such as trees, binary search trees, balanced search trees, heaps and graphs.
3) Describe and implement sorting algorithms on common data structures.
4) Describe and implement searching algorithms on common data structures.
5) Implement and use hashing algorithms.
6) Implement and use greedy algorithms.
7) Choose and design data structures for writing efficient programs.


Course Content

The course content is composed of basic data structures like trees, binary search trees, balanced search trees, heaps, graphs and sorting, hashing and greedy algorithms.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and Sorting Algorithms. Sorting algorithms.
2) Introduction to different tree structures. Trees.
3) Introduction to binary search trees. Binary search trees.
4) Implementing binary search tree using Java. Binary search trees.
5) Introduction to balanced trees and implementing AVL balanced tree structure using Java. AVL trees.
6) Using other balanced tree structure using Java. Other balanced trees.
7) Using heap structure and implementing them using Java. Heap.
8) Using heaps as priority queues. Midterm. Heap.
9) Analyzing and implementing hashing algorithms. Hashing algorithms.
10) Analyzing and implementing graph structure using Java. Graph.
11) Analyzing and implementing graph algorithms. Graph algorithms.
12) Analyzing and implementing greedy algorithms. Greedy algorithms.
13) Analyzing and implementing greedy algorithms. Quiz. Greedy algorithms.
14) Review.

Sources

Course Notes / Textbooks: Data Structures & Problem Solving Using Java (Mark Allen Weiss)
Data Structures and Algorithm Analysis in Java (Mark Allen Weiss)
Data Structures and Abstractions with Java (Frank Carrano)
References: Yok.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Application 4 % 10
Quizzes 1 % 10
Project 1 % 15
Midterms 1 % 25
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Study Hours Out of Class 12 2 24
Project 10 2 20
Homework Assignments 2 5 10
Quizzes 5 2 10
Midterms 5 3 15
Final 10 3 30
Total Workload 165

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products. 4
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems. 2
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging. 5
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem. 2
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation. 1
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically. 3
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams. 1
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems. 2
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system. 3
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities. 3
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life. 2
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions. 4
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.