SEN2201 Computing SystemsBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN2201 Computing Systems Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi PINAR BÖLÜK
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
Dr. Öğr. Üyesi PINAR BÖLÜK
Recommended Optional Program Components: None
Course Objectives: Course objective is defining bits, data types, and operations, digital logic structures, the Von Neumann model, programming, assembly language, I/O, trap routines and subroutines, the stack, introduction to programming in C, variables and operators, control structures, functions, testing and debugging, pointers and arrays, recursion, I/O in C, data structures.

Learning Outcomes

The students who have succeeded in this course;
1. Define basics of computational devices
2. Define bits, data types and operations
3. Define logic gates, combinational logic circuits, concept of memory, sequential logic circuits.
4. Define memory organization, registers, instruction set, data types, addressing modes.
5. Use variables, operators, control structures, iteration structures, pointers and array and functions in C programming language

Course Content

The course content is composed of the basics of computer systems, bits, data types and operations, digital logic structures (logic gates, combinational logic circuits, concept of memory, sequential logic circuits), the von Neumann model,
memory organization and registers, instruction sets, addressing models, Assembly language, Programming in C.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to a Computer System
2) Bits, Data Types, and Operations
3) Digital Logic Structures (logic gates, combinational logic circuits)
4) Digital Logic Structures (concept of memory, sequential logic circuits)
5) The von Neumann Model (instruction processing)
6) The von Neumann Model (I/O basics)
7) ISA Overview (Memory organization and registers)
8) ISA Overview (Memory organization and registers)
9) Review for the Midterm Exam
10) Assembly Language
11) Programming in C
12) Programming in C
13) Programming in C
14) Programming in C

Sources

Course Notes / Textbooks: Patt & Patel, Introduction to Computing Systems (2nd edition), MGraw Hill, 2004. ISBN 0-07-121503-4 (required)

Mano & Kime, Logic and Computer Design Fundamentals (3rd edition), Prentice Hall, 2004. ISBN 013140539X (recommended)
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 10 % 20
Midterms 1 % 35
Final 1 % 45
Total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 5 10 50
Midterms 1 26 26
Final 1 20 20
Total Workload 138

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.