AMERICAN CULTURE AND LITERATURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH3012 Physics for Game Programming Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MEHMET BERKE GÜR
Recommended Optional Program Components: N/A
Course Objectives: Many games benefit from the use of real physics for enhanced reality. Therefore it is important for a game developer to understand and use law of physics to plan more realistic games. This course serves as a starting point for the development of physics-based realistic games.

Learning Outcomes

The students who have succeeded in this course;
1- Apply Newton’s Second Law to particles and particle systems,
2- Use 3D kinematics of particles and rigid bodies in example scenarios,
3- Describe the forces and moments in rigid bodies,
4- Model the motion of fundamental vehicles : aircraft, ship and car,
5- Understand the physics of light and its interaction between surfaces,
6- Describe the surface properties of different materials used in solid modeling,
7- use Processing environment to program fundamental game concepts with physical realism

Course Content

The role of physics in game programming; Basic Concepts from Physics; Rigid Body Motion; Introduction to Processing Programming; Game Programming Lab; Vehicle models; Modeling ambient environment; Game programming applications;

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The role of physics in game programming See course web site for additional resources and info
2) Basic Concepts from Physics: Velocity, mass, acceleration, force etc.
3) Basic Concepts from Physics (cont)
4) Rigid Body Motion; Term projects and formation of project groups
5) Introduction to Processing Programming
6) Processing (cont)
7) Game Programming Lab
8) Vehicle models
9) Vehicle models
10) Modeling ambient environment
11) Modeling ambient environment (cont)
12) Midterm; Project interim checks Prepare yourself for project interim check
13) Game programming applications
14) Project presentations Prepare a presentation about your project; check your project whether it works for all conditions

Sources

Course Notes / Textbooks: David H. Eberly, “Game Physics”, (2010, 2nd ed.)
ISBN:978-0123749031
References: Online resources, Video tutorials

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Homework Assignments 3 % 15
Presentation 1 % 10
Project 1 % 40
Midterms 1 % 15
Final 1 % 15
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Laboratory 1 3
Study Hours Out of Class 16 48
Presentations / Seminar 1 5
Project 1 20
Homework Assignments 3 12
Midterms 1 4
Final 1 6
Total Workload 140

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Upon graduation, students will acquire key skills and attributes to conduct research to use research tools, to solve problems, to communicate effectively and to transfer skills to the workplace.
2) Upon graduation, students will have developed the ability to discuss key issues in fluent English.
3) Upon graduation, students will have developed the ability to compose written documents in English with a mature prose style. 4
4) Upon graduation, students will have gained broad knowledge of the American and English literary canons. 4
5) Upon graduation, students will have developed the ability to analyze, synthesize and criticize sophisticated works of American and English literature. 4
6) Upon graduation, students will have achieved in depth the understanding of contemporary American culture. 3
7) Upon graduation, students will have developed the ability to draw links among diverse literary texts and documents and establish critical connections and adopt an interdisciplinary attitude. 3
8) Upon graduation, students will be able to develop new projects individually or in teams. 3
9) Upon graduation, students will be able to apply their knowledge into their lives for interdisciplinary problem-solving and solutions. 4