Language of instruction: |
English |
Type of course: |
Must Course |
Course Level: |
Bachelor’s Degree (First Cycle)
|
Mode of Delivery: |
Face to face
|
Course Coordinator : |
Assist. Prof. BESTE BAHÇECİ |
Course Lecturer(s): |
RA RESUL ÇALIŞKAN
|
Recommended Optional Program Components: |
None |
Course Objectives: |
The goal of this course to obtain a basic knowledge on the modeling, characteristics, and performance of feedback control systems, stability, root locus, frequency response methods, Nyquist/Bode diagrams, lead-lag, PID compensators, state space analysis and controller design. |
Review of modeling of dynamic systems using differential equations, transfer functions, state space models, characteristics of feedback systems, time domain transient and steady-state response, stability of feedback systems, the Routh-Hurwitz method, the root-locus procedure, lead-lag compensators, frequency response analysis, Bode diagrams, Nyquist criteria, state feedback controller design. Teaching methods of the course include description, individual effort, reading, group work, simulation, discussion, problem solving and technology assisted learning and project preparation. |
Week |
Subject |
Related Preparation |
1) |
Purpose and Motivation, application to engineering |
|
2) |
Idea of System model, Standard Forms, Laplace Transform |
|
3) |
Input-Output Models, Transfer Functions, State Variable Models, Block Diagrams |
|
4) |
Basic Concepts, Transient and steady state response |
|
5) |
Basic Concepts, Transient and steady state response |
|
6) |
Routh’s Stability criteria and Root locus analysis |
|
7) |
Routh’s Stability criteria and Root locus analysis |
|
8) |
Lag, Lead and Lead-Lag Controller design via Root locus |
|
9) |
Lag, Lead and Lead-Lag Controller design via Root locus |
|
10) |
Frequency Response Analysis |
|
11) |
State-Space Analysis |
|
12) |
State-Space Control Design |
|
13) |
State-Space Control Design |
|
14) |
Course Review |
|
|
Program Outcomes |
Level of Contribution |
1) |
Build up a body of knowledge in mathematics, science and Mechatronics Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. |
4 |
2) |
Identify, formulate, and solve complex Mechatronics Engineering problems; select and apply proper modeling and analysis methods for this purpose. |
4 |
3) |
Design complex Mechatronic systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. |
4 |
4) |
Devise, select, and use modern techniques and tools needed for solving complex problems in Mechatronics Engineering practice; employ information technologies effectively. |
4 |
5) |
Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechatronics Engineering. |
4 |
6) |
Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechatronics-related problems. |
|
7) |
Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. |
3 |
8) |
Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. |
|
9) |
Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechatronics Engineering applications. |
|
10) |
Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. |
|
11) |
Acquire knowledge about the effects of practices of Mechatronics Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechatronics engineering solutions. |
|