OPERATING ROOM SERVICES (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE3705 Electromagnetic Theory Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖMER POLAT
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to make the students grasp and understand the classical electric and magnetic phenomena, and use the underlying physical theories in order to solve certain electrodynamics problems.

Learning Outcomes

The students who have succeeded in this course;
The student will be able to
1. calculate gradient, divergence and curl of the vector
2. calculate the electric field of the point charge and the continuous charge distribution in matter and in free space; define the divergence and the curl of the electric field.
3. calculate the electric potential of the point charge and the continuous charge distribution in matter and in free space.
4.calculate the magnetic field of steady currents and define the divergence and curl of magnetic field.

Course Content

In this course, electrostatics, magnetostatics will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Review of vector analysis
2) Review of vector analysis
3) Coulomb's Law
4) Gauss' Law
5) Dielectrics
6) Electric Potential and Applications
7) Magnetic Field in Vacuum
8) Magnetic Field in Materials
9) Magnetic forces and torque
10) Induction and Faraday's Law
11) Inductance
12) Maxwell's Equations
13) Electromagnetic Waves
14) Reflection and Transmission on Interface

Sources

Course Notes / Textbooks: Fundamentals of Engineering Electromagnetics, by D. K. Cheng, Prentice Hall, 1992.
References: 1. Branislav M. Notaros, “Electromagnetics,” Prentice Hall, 2011.
2.David J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, 1999.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 16 6 96
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) The use of theoretical knowledge in practice
2) Effective use the terminology of the field
3) Behave according to basic professional legislation related the field
4) Use information and communication technology, express professional knowledge through written and verbal/non-verbal communication
5) Express the social, scientific, cultural and ethical values of professional
6) Behave according to quality management and processes and participate in these processes
7) Develop themselves personally and professionally updating knowledge, skills and competencies of the field with lifelong learning awareness
8) Use basic level knowledge and skills related the field, interpret and evaluate the data, identify potential problems and solve them
9) Implement techniques according to developing technology and use new tools and devices
10) The ability to prepare the operating room for surgery
11) The ability to admit the patient into the operating room and to provide assistance for post - operational transport
12) The ability to have theoretical and practical knowledge related to the field at a basic level