INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE3705 Electromagnetic Theory Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖMER POLAT
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to make the students grasp and understand the classical electric and magnetic phenomena, and use the underlying physical theories in order to solve certain electrodynamics problems.

Learning Outcomes

The students who have succeeded in this course;
The student will be able to
1. calculate gradient, divergence and curl of the vector
2. calculate the electric field of the point charge and the continuous charge distribution in matter and in free space; define the divergence and the curl of the electric field.
3. calculate the electric potential of the point charge and the continuous charge distribution in matter and in free space.
4.calculate the magnetic field of steady currents and define the divergence and curl of magnetic field.

Course Content

In this course, electrostatics, magnetostatics will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Review of vector analysis
2) Review of vector analysis
3) Coulomb's Law
4) Gauss' Law
5) Dielectrics
6) Electric Potential and Applications
7) Magnetic Field in Vacuum
8) Magnetic Field in Materials
9) Magnetic forces and torque
10) Induction and Faraday's Law
11) Inductance
12) Maxwell's Equations
13) Electromagnetic Waves
14) Reflection and Transmission on Interface

Sources

Course Notes / Textbooks: Fundamentals of Engineering Electromagnetics, by D. K. Cheng, Prentice Hall, 1992.
References: 1. Branislav M. Notaros, “Electromagnetics,” Prentice Hall, 2011.
2.David J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, 1999.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 16 6 96
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments