EEE3705 Electromagnetic TheoryBahçeşehir UniversityDegree Programs CARTOON AND ANIMATIONGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CARTOON AND ANIMATION
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE3705 Electromagnetic Theory Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖMER POLAT
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to make the students grasp and understand the classical electric and magnetic phenomena, and use the underlying physical theories in order to solve certain electrodynamics problems.

Learning Outcomes

The students who have succeeded in this course;
The student will be able to
1. calculate gradient, divergence and curl of the vector
2. calculate the electric field of the point charge and the continuous charge distribution in matter and in free space; define the divergence and the curl of the electric field.
3. calculate the electric potential of the point charge and the continuous charge distribution in matter and in free space.
4.calculate the magnetic field of steady currents and define the divergence and curl of magnetic field.

Course Content

In this course, electrostatics, magnetostatics will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Review of vector analysis
2) Review of vector analysis
3) Coulomb's Law
4) Gauss' Law
5) Dielectrics
6) Electric Potential and Applications
7) Magnetic Field in Vacuum
8) Magnetic Field in Materials
9) Magnetic forces and torque
10) Induction and Faraday's Law
11) Inductance
12) Maxwell's Equations
13) Electromagnetic Waves
14) Reflection and Transmission on Interface

Sources

Course Notes / Textbooks: Fundamentals of Engineering Electromagnetics, by D. K. Cheng, Prentice Hall, 1992.
References: 1. Branislav M. Notaros, “Electromagnetics,” Prentice Hall, 2011.
2.David J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, 1999.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 16 6 96
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have theoretical and practical knowledge and skills in cartoon and animation.
2) To be able to develop research, observation-experience, evaluation skills in the field of cartoon and animation and effectively communicate ideas, convincing actions and emotions using cartoon and animation and performance principles in every direction.
3) Making animated films with various artistic styles and techniques.
4) Designing the cartoon and animation production process using initiative, applying it with creativity and presenting it with personal style.
5) To be a team member in the production process of cartoon and animations, to be able to take responsibility and manage the team members under their responsibility and to lead them.
6) To be able to evaluate cartoon and animations in the framework of their knowledge and skills.
7) To be able to define and manage learning requirements in the field of cartoon and animation.
8) To be able to communicate with related organizations by sharing scientific and artistic works in cartoon and animation and to share information and skills in the field.
9) To monitor developments in the field of cartoon and animation using foreign languages ​​and to communicate with foreign colleagues.
10) To be able to use general information and communication technologies at advanced level with all kinds of technical tools and computer software used in cartoon and animations.
11) Using critical thinking skills and problem solving strategies in all aspects of development and production, effectively communicating ideas, emotions and intentions visually, verbally and in writing, and effectively incorporating technology in the development of cartoon and animation projects.
12) To have sufficient knowledge about ethical values ​​and universal values ​​in the field of cartoon and animation.