EEE3705 Electromagnetic TheoryBahçeşehir UniversityDegree Programs PSYCHOLOGYGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
PSYCHOLOGY
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE3705 Electromagnetic Theory Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖMER POLAT
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to make the students grasp and understand the classical electric and magnetic phenomena, and use the underlying physical theories in order to solve certain electrodynamics problems.

Learning Outcomes

The students who have succeeded in this course;
The student will be able to
1. calculate gradient, divergence and curl of the vector
2. calculate the electric field of the point charge and the continuous charge distribution in matter and in free space; define the divergence and the curl of the electric field.
3. calculate the electric potential of the point charge and the continuous charge distribution in matter and in free space.
4.calculate the magnetic field of steady currents and define the divergence and curl of magnetic field.

Course Content

In this course, electrostatics, magnetostatics will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Review of vector analysis
2) Review of vector analysis
3) Coulomb's Law
4) Gauss' Law
5) Dielectrics
6) Electric Potential and Applications
7) Magnetic Field in Vacuum
8) Magnetic Field in Materials
9) Magnetic forces and torque
10) Induction and Faraday's Law
11) Inductance
12) Maxwell's Equations
13) Electromagnetic Waves
14) Reflection and Transmission on Interface

Sources

Course Notes / Textbooks: Fundamentals of Engineering Electromagnetics, by D. K. Cheng, Prentice Hall, 1992.
References: 1. Branislav M. Notaros, “Electromagnetics,” Prentice Hall, 2011.
2.David J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, 1999.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 16 6 96
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To develop an interest in the human mind and behavior, to be able to evaluate theories using empirical findings, to understand that psychology is an evidence-based science by acquiring critical thinking skills.
2) To gain a biopsychosocial perspective on human behavior. To understand the biological, psychological, and social variables of behavior.
3) To learn the basic concepts in psychology and the theoretical and practical approaches used to study them (e.g. basic observation and interview techniques).
4) To acquire the methods and skills to access and write information using English as the dominant language in the psychological literature, to recognize and apply scientific research and data evaluation techniques (e.g. correlational, experimental, cross-sectional and longitudinal studies, case studies).
5) To be against discrimination and prejudice; to have ethical concerns while working in research and practice areas.
6) To recognize the main subfields of psychology (experimental, developmental, clinical, cognitive, social and industrial/organizational psychology) and their related fields of study and specialization.
7) To acquire the skills necessary for analyzing, interpreting and presenting the findings as well as problem posing, hypothesizing and data collection, which are the basic elements of scientific studies.
8) To gain the basic knowledge and skills necessary for psychological assessment and evaluation.
9) To acquire basic knowledge of other disciplines (medicine, genetics, biology, economics, sociology, political science, communication, philosophy, anthropology, literature, law, art, etc.) that will contribute to psychology and to use this knowledge in the understanding and interpretation of psychological processes.
10) To develop sensitivity towards social problems; to take responsibility in activities that benefit the field of psychology and society.
11) To have problem solving skills and to be able to develop the necessary analytical approaches for this.
12) To be able to criticize any subject in business and academic life and to be able to express their thoughts.